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CHAPTER      1 

INTRODUCTION 

1. General Remarks 

The problem of optimal control of uncertain systems has tradi- 

tionally been treated in a stochastic framework in the sence that the un- 

certain quantities are modeled as random vectors and random processes 

with statistical properties which are assumed known.   The controller 

selected is the one for which the expected value of a suitable cost func- 

tional is minimized.    In this framework some mathematically elegant 

results have been obtained,  notable cases being the separation theorem 

for a linear system,linear measurements and quadratic cost functional;   " 

^ *       ' and the separation theorem for a linear system,  line 

suren 

(Wo3) 

ar mea- 

surements, Gaussian disturbances and nonquadratic   cost functional. 

Specification of the a priori statistics of all the uncertain quantities 

involved must be made in any such problem.    In many practical situations 

however these statistics are not available,  and cannot be obtained either 

because of physical constraints or due to prohibitive cost.    In such cases 

however the designer may have information of less detailed structure con- 

cerning the uncertain quantities,  such as for instance bounds on the mag- 

nitude or energy of the uncertain quantities.    In other words the designer 

may be given a set where the uncertain quantities are known to belong. 

A possible design approach under these circumstances would then be to 

select the controller from some admissible class which performs best 

when the uncertain quantities assume their worst possible values within 

-6- 
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the givea set.    In its simplest, form the corresponding decision problem 

is described by a triplet (U, Q, J),  where U is the set of controllers under 

consideration, Q is the set in which the uncertain quantities are known 

to belong and J:UxQ -*  [ -oo,  +00]   is a given cost function.    The objective 

is to find 

J =   inf     sup   J(u, q) (1.1) 
ueU   qeQ 

and,  if it exists,  vhe minimizing controller ü in U. 

Problems of the general form of equation (1.1) can also arise in 

the context of other situations,    In some cases the nature of the problem 
I 

calls for a pessimistic or worst case approach such as when specifiejd 
r 

tolerances must be met with certainty.     For example in a chemical process 

control problem it may be necessary to guarantee that the state will stay in 

a specified region of the state space,   or eqm.v^lently avoid a critical region 

of the state space where process instability may  occur.    In other cases a 

worst case analysis is performed in order to proviu*« a comparison with 

the performance of a design adopted on the basis of oth^¥ considerations. 

Optimal uncertain control problems that can be redufcfcd to the form 

of equation (1.1) are referred to as Miiximax Control Problems and are 

the object of study of this thesis. 

The modelling of uncertainties as quantities that are unknown except 

that they belong to prescribed sets has recei/ed attention before,  dating to 

(Wal) Wald's statistical decision theory/ '   In the context of Wald's theory 

the decision problem (U,Q, J) mentioned earlier is viewed as a game against 

Nature and a saddle point of this game in (possibly) randomized strategies 

is sought.    Whenever a saddle point in pure strateg.'   ü exists,   i.e.,  whenever 
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inf    sup   J(ui, q) =   sup    inf    J(u, q) (1-2) 
ufU   qcQ qeQ   ueU 

Wald's approach is equivalent to the worst case approach.    When however 

the equality (1.2) does not hold "Wald's theory recommends randomization 

in the spaces of strategies U and Q,  and the worst case viewpoint is lost. 

Wald's theory was applied by Sworder* to discrete-time control systems 

with limited success since randomization within the admissible set of con- 

trollers was not considered appealing from the practical viewpoint of an 

engineer. 

The consideration of the minimax approach to the optimal control 

of discrete-time uncertain systems without the randomization suggested 

(Fl)  (F2) by Wald's theory was recommended by Feldbaunv     " v      ' and systemati- 

cally studied by Witsenhausen:      '' ^      ' 

Problems of system state estimation for the case where the un- 

certain quantities are described by their membership in given sets have 

i      u J       ^ u    «r*       u (Wl), (W3)c. (SI), (S2)I(S3) also been considered by Witsenhausen/      " *      ' Schweppex        x     '  x     ' 

and others.'  c   '' ^      '   Such problems, though important in their own right, 

arise in connection with minimax control problems for which the controller 

has available only a noise-corrupted measurement of an output of the sys- 

tem rather than an exact measurement of the system state.   Although the 

emphasis in this thesis is in the feedback control of uncertain systems, 

some state estimation problems will also be considered which have a direct 

relation to feedback control problems.    In the next section we shall state 

the basic problem considered in the thesis and outline the general approach 

which we will adopt towards its solution. 

.«■■■■■■■■■■■■■■i 
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2. The Basic Problem 

The objective of this thesis is the study of the following problem: 

Problem 1.1:   Given is the discrete-time dynamic system 

xk+l   =   VW^' k = 0, 1, . .. ,N-1 (1.3) 

where x. eR  ,   k = 0, 1, .., N is the state vector, u. eR    ,  k = 0, 1, . . ., N-l, 

is the control vector,  w.cR  ,  k = 0, 1, . . .,N-1,  is the input disturbance 

vector,  and f, :R    x R     x R    -*   R    are known functions. 

Available to the controller are measurements of the form 

'f 
zk =  hk(xk, vk)* , k=l,2 N-l (1.4) 

where,  for all k = 1,2,..., N-l,  z.eR    is the measurement vector,   v.eR^ 

is the measurement noise vector,  and h. :R    x R" -*  R    are known functions. 

TV vi J • _ln+Nr+(N-l)p The uncertain quantities lumped in a vector qeR x       'r 

q=   (xj)iwjj,w
lj,...,w^_1,v

,
1, vj, ....v^j)' (1.5) 

are known to belong to a given subset Q of Rn     r I   "  'P 

qcQ (1.6) 

We restrict attention to this form of measurement equation without 
loss of generality. A measurement equation containing the control 
vector explicitly 

zk =  8k(xk,uk_ltvk) 
can be reduced to the form (1.4) by introducing additional state variables 
through the equation 

\ = Vi 
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Attention is restricted to control laws of the form 

k(8+m) _  Rm| k= 0>1 N_1 

taking values 

uk =  ^k^l' zl zk, Uo,Ur " * 'uk-l^      k = 0, 1 N"1 

1 

where \i.    is interpreted as a constant vector {\L   = u ).    It is required to 

find (if it exists) the control law in this class for which the cost functional 

J(fA   . K,. • ..^.j)   =     »Up F[X1,X2, . .,XN, JXo, JljCZj.U   )  

^N-l^T •• '^N-Z^ 
(1.7) 

\ 
is minimized,   subject to the system and measurement equation constraints 

(I. 3), (1.4) and where the function F:R   *        ' -•  (-oo,  ao]    is given. 

It should be noted that in the statement of the above problem we take 

into account implicitly the presence of state and control constraints,   since 

we allow the function F in the cost functional (1.7) to take the value oo.    We 

simply specify that the function F takes the value oo whenever some constraint 

is violated.    Thus,  for example,  state and control constraints of the form 

x.eX.,  u,    jCU.    .,  where X., U.,,  k= 1,2, ..,N, are given sets,  are 

accounted for by adding to the function F the function 

N 
S   {6(xi|X.) + 6(Hti_1(z1,...u._2)|U._1]} 
i= 1 

where 6(y| Y) denotes the indicator function of a set Y (6(y| Y)  =   0 if yeY, 

6(y|Y) = co if y^Y). 
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The Problem 1.1 can,  in principle,  be solved by dynamic program- 

ming,  and the appropriate algorithm will be presented in this thesis.    How- 

ever it is in general very difficult from this algorithm to characterize ef- 

ficiently the optimal controller wliich solves Problem 1.1.    Thus special 

cases with increased structure will be considered in order to obtain addi- 

tional results related to the characterization of the optimal controller and 

in order to gain increased understanding into the structure of the solution. 

One of the major difficulties in solving the general Problem 1. 1 

results from the fact that the value of the current state of the system (1. 3) 

is not available to the controller but instead only partial information is 

known about it via the measurements (1.4).    This fact results in that,   in 

general, the optimal control law will be a function of all the prior mea- 

surements,  i.e., in general the controller will need to store all the prior 

measurements or,  possibly,  the value of a complicated function of these 

measurements.    However,  as in the corresponding stochastic situation, 

whenever an exact measurement of the current state is available to the con- 

troller,   i.e.,   in equation (1. 4) we have 

hk(xk.vk) =  xk (1.8) 

and in addition the input disturbances w,   are individually constrained at each 

time 

w.eW. C Rr 

k      k 

and the function F in equation (1.7) is of the additive form 

N 
F(x1.x2...,xN,uo,u1....uN_1) ^g^.u^) 
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then it can be shown that the optimal control law is of the form u.   = ji. (x. ). 

In other words the control law need only be a function of the current state, 

with a substantial simplification resulting.    Alternatively expressed, under 

the circumstances described above,  the value of the current state contains 

all information about the past history of the system which is necessary for 

the specification of the optimal control. 

The special case of Problem 1.1 where equation (1.8) holds is re- 

ferred to as the minimax control problem with perfect state information and 

receives considerable attention in this thesis.   A large part of the thesis, 

Chapters 2 and 3,  are devoted to problems with perfect state information. 

This   serves a double purpose.    In addition to studying a class of problems 

which is of interest in its own right,  we obtain results which are useful for 

deriving optimal or suboptimal solutions for somQ minimax control problems 

with imperfect state information.    This is true in particular for the problem 

of the reachability of a target tube which will be considered extensively in 

the thesis. 

3. Contributions and Organteation of the Thesis 

The problems considered in this thesis can be divided into three 

broad categories.    Minimax control problems with perfect state information 

are considered in Chapters 2 and 3,  minimax control p.oblems with im- 

perfect state information are considered in Chapters 5 and 6,  and state 

estimation problems are examined in Chapter 4. 

In Chapter 2 a minimax control problem with perfect state information 

is considered for the case of a linear system and a cost functional with some 

MMBM^Mi^Ml 
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convexity properties.    This problem in a somewhat less general form was 

(Wl) fW2) considered first by Witsenhausen/ Some new results concerning 

existence of optimal control laws are obtained,  and the investigation of 

necessary conditions for optimality is carried out in depth.   A minimax 

principle is derived for this problem which holds however only under some 

restrictive assumptions.    When specialized to the case of a deterministic 

optimal control problem this minimax principle yields a minimum principle 

for which the cost functional is not required to be differentiable. 

In Chapter 3 the problem of reachability of a target tube is considered 

for the perfect state information case.    This problem can be viewed as a 

special case of the problem considered in Chapter 2.    Necessary and suf- 

ficient conditions for the existence of a solution are obtained.    These con- 

ditions can also be derived with little effort from Witsenhausen's results/      " 

(W2) In addition a new ellipsoidal approximation algorithm,  which appears 

to have some potential for practical applications,   is derived and its properties 

are investigated. 

In Chapter 4 the problem of the system state estimation is examined 

for a set-membership description of the uncertainty.    Attention is restricted 

to linear systems and two different set-membership descriptions of the un- 

certainty,  the cases of energy constraints and instantaneous ellipsoidal con- 

straints on the uncertain quantities.    Some new estimation algorithms are 

obtained for both cases.    In particular,  for the case of instantaneous ellip- 

soidal constraints for the uncertain quantities,  an estimator is obtained which 
/gj \ 

offers distinct advantages over the estimator proposed by Schweppc. 

Furthermore we use a new approach towards the solution of the problem which 

allows us to treat some problems not considered as yet in the literature in- 

cluding the smoothing problem. 
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In Chapter 5 the general case of problem 1. 1 is examined and the 

dynamic programming algorithm for its solution is developed.    This algo- 

rithm differs in its form and is more general than the algorithm of 

Witsenhausenx although the same basic ideas are involved.    Subsequently 

the notion of a sufficiently informative function, which parallels the notion 

of a sufficient statistic of stochastic optimal control» is formulated for the 

first time.    Some results are then derived which illustrate the dual function 

of the optimal controller as an estimator and an actuator.    This parallels 

the dual estimation-actuation interpretation of the function of the optimal 

controller in the analogous problem when the uncertainties are modeled as 

random vectors or stochastic processes. 

Finally in Chapter 6 the problem of the reachability of a target tube 

with imperfect state information is considered for the case of a linear system. 

The material in this chapter is new.    For the special case of energy con- 

straints on the uncertain quantities the optimal controller is completely 

characterized,  and its separation in an estimator and an actuator is explicitly 

demonstrated.    The case of instantaneous ellipsoidal constraints on the un- 

certain quantities is also considered,  and a suboptimal algorithm is derived 

which offers some practical implementation advantages. 

For the development of some of the results of Chapter 2 it is nec- 

(RI) essary to appeal in a nontrivial way to the theory of convex functions. 

Since portions, of this theory are comparatively recent and not very widely 

known,  the required results have been summarized in Appendix I.   It should 

be noted that this theory is used only in Chapter 2,  and is not necessary for 

the developments in the remainder of the thesis. 



CHAPTER 

LINEAR MINIMAX CONTROL PROBLEMS 
WITH PERFECT STATE INFORMATION 

1. General Remarks 

In this chapter we consider a minimax control problem with perfect 

state information.    As was mentioned in the previous chapter the fact that 

the controller has available at each time a perfect measurement of the sys- 

tem state results in a substantial simplification in the solution of the prob- 

lem.    For example the dynamic programming algorithm, which is the basic 

method for solving minimax control problems, becomes greatly simplified 

for this case.    Furthermore, in this chapter we make some additional as- 

sumptions which enable us to obtain some deeper analytical results.    We 

assume that the dynamical system involved is linear, and that the cost func- 

tional has some convexity properties.    This will allow us to consider in de- 

tail questions of existence of solutions and necessary conditions for optimality, 

In addition it will be shown for this case that if the sets where the input dis- 

turbances are known to belong are polyhedra,   the computational requirements 

of the dynamic programming algorithm can be further significantly reduced. 

The results mentioned above rely heavily on the additional structure of lin- 

earity for the system and convexity for the cost functional,  and do not appear 

to be available without them.   In this way the problem of this chapter should 

be considered as the special case of the minimax control problem 1. 1 which 

is most amenable to somewhat deeper analysis,  and for which the obtained 

results are considerably stronger than in the general case.    Yet this special 

case is sufficiently general to be of interest in its own right,  and the cor- 

-15- 
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responding results provide insights into the solution of other more gen- 

eral minimax control problems. 

For t'-e development of some of the results of this chapter we will 

need to draw heavily on some comparatively recent and not very widely 

known results of 'he theory of convex functions.1     '   The related   theory 

has been outlined in Appendix I and will be used mainly after Section 3 of 

this chapter.    This theory will not be needed later in the thesis.    The 

reader who is interested in subsequent chapters can proceed to those chapters 

after section 3 without loss of continuity. 

In the next section the minimax control problem of this chapter will 

be formulated and its solution by dynamic programming will be shown sub- 

sequently in Section 3.    In Section 4 the properties of the dynamic program- 

ming algorithm will be investigated and sufficient conditions for existence of 

optimal control laws will be derived.   In Section 5 necessary conditions for 

optimality will be obtained.    In particular a minimax principle is proved 

which however holds under somewhat restrictive assumptions.    When spe- 

cialized to deterministic optimal control problems this minimax principle 

yields a minimum principle for which the cost functional is not assumed 

differentiable. 

2. Problem Formulation 

The object of study in this chapter is the following problem. 

Problem 2.1; Consider the linear discrete-time dynamic system: 

xk+1   =  Akxk + Bkuk + Gkwk, k = 0, 1 N-l (2.1) 
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where x. cR   ,  k=0,1,..,N,  is the state vector, u.€Rm,  k = 0, 1, . ., N-l, 

is the control vector,  w,€R  ,  k = 0, 1, .. ., N-l, is the disturbance vector, 

and A. , B. , G. , k = 0, 1, . . ., N-1 are given matrices. 

It is assumed that the initial state x    is known and that the disturbance o 
vectors w.  belong to given nonempty sets W. C R 

wkcWk, k = 0, 1, ...,N-1 (2.2) 

Attention is restricted to control laws of the form 

lk 

taking values 

uk =  jxk(xk), k= 0,1,.... N-l (2.4) 

It is required to find (if it exists) the control law in this class for which the 

cost functional 

N 

|x. :Rn-Rm, k = 0,1, ...,N-1 (2.3) 

J<W-"»1N-l) = ™P *   {W + «k-lI»VlK-l"} 
wk Wk 
k=0, 1,..,N-1 (2-5) 

is minimized,   subject to the system equation constraints (2.1),  and where 

the functions f.:R    -*  (-oo,  +oo],  g._.:R      -* (-co, +oo],  k= 1,2,...,N, 

are given closed proper convex functions. 

In Definition A. 4 of Appendix I,  a closed proper convex function 

f ;R    -• (-oo,  +oo] is defined to be an extended real valued convex function 

which is lower semicontinuous and such that -oo < f(x) for all xeR    and with 

f(x) < -foo for at least one xeR   .    Closed proper convex functions are reviewed 

in more detail in Appendix I.    One of the advantages of using extended real 
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valued functions in the cost functional (2. 5) is that state constraints and 

control constraints of the form x. cX. ,  u. cU.  where X. , U.  are given 

convex sets can be conveniently incorporated in the cost functional rather 

than stated explicitly.    This is accomplished by adding under the summation 

sign in the right hand side of equation (2. 5) the indicator functions 

x.eX, {0        if 

+oo     if 

6(xk|Xk)=   JU        "V*k 

« VXk 

{0        if u, eU 
k 

+oo     ifUjrfU 

k 

Since the theory of extended real valued convex functions is well estab- 

lished/     ' introduction of the extended real line does not create difficulties 

as long as one is careful to avoid the meaningless sums oo - oo and -db +co. 

The optimal controller in Problem 2.1 is required to be in feedback 

form.   As a consequence,  local variational analysis is very difficult for this 

problem and dynamic programming remains the only method to proceed for 

solution.    The development of the dynamic programming algorithm for 

Problem 2.1 is the object of the next section. 

3. Solution by Dynamic Programming 

Let us denote by J      the optimal value of the cost functional (2. 5) xo 

Jx     = in* J^Q.RJ. • • .,KN   j) (2.6) 
0 ^k 

k=0, 1,..,N-1 

The dynamic programming algorithm to be described in the following pro- 

position provides the optimal value Jx    at the last step of a recursive se- 
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quence of minimization and maximization steps.    Furthermore the optimal 

control law (if it exists) can be obtained from the sequence of the minimi- 

zation steps in a much simpler way than directly from the equation (2.6). 

Proposition 2.1;   Assume that for the functions H,  defined below we have 

-oo <  H. (x. ) for all x. eR    and k = 0, 1, . . ., N-l.    Then the optimal value 

J      of the cost functional (2. 5) is given by 
xo 

J      =  J (x ) (2.7) XÄ ox  o x        ' o 

where the function J   : R    -•  (-co, +GO]  is given by the last step of the re- 

cursive algorithm 

JN(xN) = fN(xN) (2.8) 

Ek+1(x) =    sup     Jk+1(
x + Gk

w
k).    k=0, 1 N-l       (2.9) 

Hk(xk) = inf {Ek+1(Akxk + Bkuk) + gk(uk)},    k = 0, 1, . .(N-1   (2.10) 
uk 

Jk(xk) =  Hk(xk) + fk(xk),       k= 1.2,...,N-l (2.11) 

J (x  ) =  H (x ) (2.12) ox  o ox o' y ' 

Proof:   Since -oo <  HN  i(xN_i) for all x»^   .^R  ,  we have that for every 

c  >  0 there exists a function M-xj,»    : Rn —  Rm such that 

^^N-^N-l^N-l^N-l.e^N-l"  + ^N-l^N-l. e(xN-l )1 

<      inf (E^AJ^^XJ^.J +BN.1fxN.1(^j.1)] + gN.^N.iCxM.j)] } + e 

^N-l 

=      HN-l(xN.l)+e (2-13) 
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By using equations (2. 6) and (2. 9) we have 

N 
inf 

Hs wk      K~1 

k=0,l,..,N-l k=0,l,..,N-l 

N-l 
inf iaf sup S   ^k^xk^ + gk l^k  l^xk   1^^ 
^k ^N-l     VWk        k=1 

k=0,l,..,N-2 k=0,l,..,N-2 

+ EN[AN-lxN.l ^N-l^N-l^N-l"  +gN-l^N.l<xN.l)l 

N-l 
inf S3?r ,S,{fk(Xk)+Vl[Vl(Xk-l)l} 

eW, k= 1 VWk 
k=0,l,..,N-2  k=0,l,..,N-2 

+ EN[ A^jx^j + BN.1KN.1>e (xN-1)]  + g^l nN_1>e (xj^j)] 

Using (2.13) to strenghthen the above inequality we obtain 

N-l 
J     <        inf x   — o n 

8US. uV
fk(Xk) + gk-l[,1k-l(Xk-l)l} 

k ^k^k       k= 1 

k=0,l,..,N-2  k=0,l,..,N-2 

+ HN-l<xN-l)   +e 

N-l 
inf 8UPw        J^     ^VW + Sk-l^k-l^k-l^ 

VWk       KN.l   k=1 

k=0,l,.-.N-2   k=0,l,..,N-2 

+ EN[AN_1xN_1 +BN<.1JiN_1(xN_1)]  +gN.1[KN_1(xN.1)]     +€ 

(by using the minimax inequality) 

N-l 

5        inf inf      SUP S   ^kK^Sk-l^k-lK-P^ 
^k ^N-l   wkeWk k=1 

k=0,l,..,N-2 k=0,ll..,N.2 

mmmm 
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+ ENl AN-1XN-1 + BN.1^N-1<XN.1>]  + gN-l^N.l^N-l'1     + e 

=  J      + e x o 

Since the above relations hold for every e  > 0 we conclude that 

inf 
fN-l 

Lk=i Tw 1 ^/^k^^k-A-iK-^+M^-i)1 * 
K        K 

k=0,l,..,N-2   k=0,l,..,N-2 

By repeating the above procedure we eventually obtain 

J      =  H (x ) =   J (x  ) x^ o* o ox o o 
O.E.D. 

We remark that the value of the function H.  £.1 a point x,   }    s the 

usual interpretation of the "cost-to-go" from the point x,   at time k.    This 

value can be a real number or oo but by the assumption -oo < H, (x. ),  for all 

x. eR    it cannot be -oo, k 
,n . The occurance of the equality H. (x. ) = -co for some x. eR    indicates 

a degeneracy in the problem statement and in particular in the cost func- 

tional chosen.    It implies the existence of control laws which result in a 

value of "cost-to-go" which is arbitrarily small starting at state x,   at time 

k, thus indicating that the optimization problem is not well posed.    The 

assumption -oo < H. (x, ) for all x. eR    and all k can be guaranteed to hold 

under quite general assumptions which will be stated in the next section. 

The occurance of a value H. (x. ) = oo for some x. eR    has an interestin| 

interpretation in the case where the constraint sets W,   for the disturbance 

vectors are bounded.    It should be recalled that the extended real valued 

functions f,   and g,   in the cost functional (2. 5) specify constraint sets for 
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the state and the control vectors.    It must be x.cX.   and u. cU.   for all k 

where the sets X.   and U,   are given for all k by 

xk= K'^k^^ 

Uk =   ^uk'gk^Uk^ < ^ 

A value H. (x. ) = oo implies that,   starting from the state x.  at time k, for 

every control law that the controller uses' subject to the control constraints, 

there exist disturbance vectors within the given sets W.   which will cause a 

violation of a state constraint at some later stage.    It should be noted that if 

there do not exist any state constraints,   i.e., the functions f,   are real valued, 

and in addition the sets W.  are bounded then we will have H, (x. ) < oo :for all 

x, eR    and all k. k 

The value of the optimal control law £,   at a point x,   can be obtained 

from the dynamic programming algorithm as 

fk(xk)-ük (2.14) 

where u,   is a point (assuming it exists) where the infinum in equation (2. 10) 

is attained for the fixed point x, .    In the case where for the fixed point x, 

the infimum in (2.10) is attained at more than one point the equation (2. 14) 

still holds with u,   being any one of those points. 

Aside from the dimensionality problem,  common to every algorithm 

of this nature,  an additional drawback of the dynamic programming algorithm 

is the maximization indicated in equation (2.9).    It will be shown later that, 

under some quite general assumptions,  the functions J,   are convex.    There- 

fore if the set W.   is a compact polyhedron the search for the supremum in 

Mi 
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equation (2. 9) can be confined to the finite set of the vertices ((Rl), Th. 

32.2) of W,   thus partly alleviating the computational requirements.    In 

some cases however the sets W.   are only indirectly known via their support 

functions.    This will often occur,  for example if the discrete time system 

(2. 1) results from    sampling a continuous time linear system/ In this 

case approximation of the sets W.   by a polyhedron is possible with any 

desired degree of accuracy.    If however this approximation is considered 

(W2) undesirable,use of a dual algorithm based on equations which will be 

presented in the next section may be advantageous. 

In any case the DP algorithm provides a good starting point for ob- 

taining existence results and necessary conditions for optimality.   In the 

following section its properties will be investigated.    In particular properties 

of the functions F..., H.,  J.,   k= 0, 1,...,N-1, of equations (2. 9) through 

(2. 12) will be deduced.    In addition the question of existence of optimal con- 

trol laws will be considered. 

4. Properties of the Dynamic Programming Algorithm 
and Existence of Optimal Control Laws 

Properties of the dynamic programming algorithm will be investigated 

under assumptions which cover most special cases of the general Problem 

2. 1 which are of practical interest.    Under these assumptions,  the question 

of existence of an optimal control law will be answered satisfactorily.    It 

should be noted that the statement "an optimal control law exists",  as we will 

use it here,  means that for every point x.cR    and for every k,  k - 0, 1 N-l, 

there exists a vector u. cR    auch that the infimum in equation (2.10) is attained. 

This does not exclude the possibility that this infimum is oo.    With this inter- 
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pretation if for some x.cR    we have  E.    .(A.x, +B.u. ) + gi^u. ) = oo,   for 

all u. c h. ' then,   from equation (2. 10),   H, (x, ) = oo and the infimum in (2.10) 

is attained for every u. cR  ,    This in turn according to our terminology 

implies existence of an optimal control law in as much as the point x,   is 

concerned. 

The point of view that we adopt concerning the existence of an optimal 

control law coincides with the usual point of view whenever the given initial 

condition x    is such that the optimal value of the cost functional Jv    is finite. o r xo 

As explained in the previous section,  whenever the sets W,   are bounded,  a 

value J      = oo may occur due to the presence of state constraints x. eX,   im- xo K      K 

plied by the functions f,   in (2. 5) where 

xk- {xkiyxk)<oo} 

There may also exist control constraints u. cU.  implied by the functions g 

in (2.5) 

Uk  =   {ukl*k<V < 0o} 

A value Jx    = oo indicates that for every control law ^.(x, ),  k = 0, 1, . .,N-1, 
o K     K 

there exist disturbance vectors w. cW. ,   k = 0, 1, . . ., N-1,  which will cause 

either a violation of a control constraint or a violation of a state constraint 

at some stage during the operation of the closed-loop system.    In other words 

a value J       =   oo indicates that there does not exist a control law which can xo 
guarantee the satisfaction of all the constraints of the problem.    The question 

of the existence of such a control law will not be considered in this chapter. 

This question however is central in the problem of the reachability of a 

target tube and will be answered in the context of that problem in the next chapter. 
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In order to avoid some rather uninteresting but analytically irri- 

tating situations we will make the following assumption which will hold 

throughout the remainder of this chapter. 

Assumption 2.1; 

(a) Each of the functions J. , E. , H.   of equations (2. 8) 

through (2. 12) is not the constant +oo function. 

(b) The sets W,,  k= 0, ^....N-l,  are compact. 

Before we proceed with stating the assumptions under which we will 

examine the problem of existence of an optimal control law,  let us consider 

the circumstances under which the minimum of a convex function f : R     -► 

(-co, oo]  may not be attained.    If f is lower semicontinuous the only such 

situation arises when f decreases monotonically along some direction with the 

result that either the function is not bounded below or the infimum of the func- 

tion is finite but "attained at infinity. "   Typical examples are the functions 

f(x) = x and f(x) = e      with xcR.   Thus in order to prove the existence of a mi- 

nimizing vector it is necessary to impose some conditions which will guar- 

antee that the function will not decrease monotonically (recede) along some 

direction.   Such conditions involve the notion of a direction of recession of a 

closed proper convex function.    This notion is introduced in Definition A. 10 

of Appendix I and its importance in providing existence results for optimiza- 

tion problems    is   stressed in Proposition A. 23 of Appendix I.   The assump- 

tions concerning the cost functional (2. 5) which we will make involve this 

notion.    We shall consider the following special cases. 

Special Case R;   In the cost functional (2. 5) every direction of recession of 

each of the functions f. ,  k =  1, 2, . ., N,  and g, ,  k = 0, 1, . . ., N-l,  is a direc- 

tion in which this function is constant. 
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Notice that a closed proper convex function f with no direction of 

recession is characterized by the fact that its nonempty level sets 

F    =   {x|f(x) <  a} , a: real number 

are compact,  a requirement satisfied by the functions f, , g,  of many cost 

functionals of the form (2. 5) which are of interest in practice.    However 

we allow the functions f.   and g.   to have directions in which they are con- 

stant in order to retain the possibility to weight in the cost functional only 

certain components of the state and control vectors.    The case fk(x, ) = 

XjQx.   where Q is only positive semidefinite symmetric matrix is a typical 

example of such a situation.    The basic property of a function belonging to 

the special case R is that there does not exist any halfline {z |z = x+Xy, X. > 0} 

originating at some point xcR    and pointing in the direction of some vector 

ycR    along which the function is monotonically decreasing.    This excludes 

the possibility that either the value fk(x. ) or the value gk(u. ) decreases 

monotonically as either x.  or u,   become arbitrarily large (in norm) along 

some direction. 

A  second special case which we will consider is the following: 

Special Case C:   The functions g, ,   k = 0, 1, .. ., N-l,  of the cost functional (2. 5) 

have a recession function of the form 

(gk0+)(z) = +co    for z ^ 0, (gk0+)(0) = 0,  k = 0. 1 N-l 

The notion of the recession function of a closed proper convex function 

is introduced in Definition A. 9 of Appendix I.    Essentially the condition 

(gk0+)(2) ^  +oo for z  y  0. (gk0+)(0)  =   0 
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requires that the penalty to the controller for using control vectors large 

in norm is sufficiently great.    For example a function g,   does not satisfy 

this condition if it is uniformly Lipschitz continuous.    On the other hand 

the requirement of the special case C is satisfied if the set U.   = {u. |gk(u. ) < 

00} is compact or if for instance gk(u. ) = uJRu.   where R is a positive definite 

symmetric matrix. 

Throughout this chapter we shall use the assumption: 

Assumption 2.2;   The cost functional (2. 5) satisfies the requirements of 

either Special Case R or Special Case C. 

We are ready now to prove the following proposition which states that 

under our assumptions convexity and lower semicontinuity are preserved in 

the dynamic programming algorithm and that optimal control laws exist. 

Proposition 2.2; 

(a) Under the Assumptions 2. 1 and 2. 2 the functions J. , E. , H. 

of equations (2. 8) through (2. 12) are closed proper convex 

functions for all k.    This implies in particular that the as- 

sumption -00 < H. (x, ), for all x. eR    in Proposition 2. I 

holds for all k. 

(b) The supremum in equation (2.9) is attained. 

(c) An optimal control law exists. 

Proof;   Consider first the function 

EN(x) = sup        fN(x + GN-lwN-l) 

wN-leWN.l 
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By Proposition A. 10 of Appendix I and using also Assumption 2. J the func- 

tion EN is a closed proper convex function.    The supremum is attained for 

every x since the function JM(WISI-1^ = ^N^x +^N-1WN-1^ " ^ower semicon- 

tinuous by Proposition A. 12 of Appendix I and the set WN  , is compact. 

Notice also that for all wM   »cW»,   , the function of x   EXT (x) = fN,(x + 
JN-1       N-l ^•» WN   1 

GKI  IWNT  I) has the same recession function E.. 0    = fxiO^, and thus 
IM-I   N-l' ^"» WN   1 N    ' 

+ + by Proposition A. 10 of Appendix I Ej-0   = fj.0   .    Thus if every direction of 

recession of fN is a direction in which it is constant the same is true for the 

function E... N 

Consider now the function HN  . 
i 

HN-1<XN.1>  =     inf {EN<AN-1XN-1 + BN-1UN.1> + «N-l^N-l^ 
UN-1 1 (2.14) 

By equation (A. 2) of Appendix I the function HN   .  is given by 

HN-1   =   lEND<-BN-l)8N.llAN-l <2-15) 

where the notation in the above equation is introduced in Propositions A. 4 

and A. 6 of Appendix I.    By using Proposition A. 13 of Appendix I we have 

that both in the special case C and in the special case R the function HN   . 

is a closed proper convex function and that the infimum is attained in equa- 

tion (2. 14).   Also in the special case R every direction of recession of the 

function HN   . is a direction in which HN  .  is constant.    The same is true 

for the function JN   .   =   Hj., +fj.   . since by Proposition A. 9 we have 

JN   . 0    =   HN   .0    + fN   , 0    and every direction of recession of the function 

fN   .  is a direction in which fN   . is constant.    Thus the proposition is proved 

for k - N and all the necessary facts have been established so that we can 
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proceed in exactly the same manner to prove the proposition for k = N-l 

and recursively for all k. Q.E.D. 

The equation (2.15) shows that the "cost-to-go" function HN   .  can 

be obtained from the functions £., and gN   . through operations that have 

(Rl) been extensively studied in the literature. This fact is very helpful in 

the search for sufficient conditions for existence of optimal control laws. 

For example stronger sufficient conditions can be derived in the case where 

the functions f.  and g.  of the cost functional (2. 5) are polyhedral.    By making 

use of the results of Section 19 in (Rl) it can be readily proved that the Pro- 

position 2.2 holds for this case under assumptions that are weaker than 

Assumption 2.2. 

The equation (2.15) can be used also for calculating the conjugate 

funrcions H.   and J.   via Propositions A. 14 and A. 15 of Appendix I.    We have: 

H*(x*) =   clUyE^x^ + g^-B-x*)]} (2.16) 

J*(x*)  =   cl{Hj(x*)Of*(x*)} (2.17) 

where the closure operation cl{* } and the infinal convolution operation a 

are introduced in Definition A. 5 and Proposition A. 4 of Appendix 1. The 

conjugate E. .. of the function E. ,, is given by 

E*+1(x*)  =   conv{j*+1(x*) - ^GjVMw^} (2.18) 

where TO |w. ) is the support function of the set W.   and the convex hull 

operation is as in Definition A. 3 of Appendix 1.    The equation (2.18) follows 

directly from Proposition 25   in (W2). 
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The equations (2. 16),  (2.17) and (2. 18) can form the basis for a 

dual algorithm for calculating the optimal cost similar to the one proposed 

in (W2).    The implementation of this algorithm will not be discussed in 

this thesis.   A special case has been analyzed in detail in (W2). 

5. Necessary Conditions for Optimality 

In dynamic optimization problems necessary conditions for optimality 

are usv-' ^ expressed in terms of the costate vector and the related adjoint 
(PI) 

equation.    This is true for the case of the Pontryagin Minimum Principle^ 

^       ' as well as the Minimax Principle of Zero Sum Differential Games as 

described by Isaacs.       '   In both these cases at points of an optimal trajectory 

where the "cost-to-go" function is differentiable,  the costate vector is equal 

to the gradient of the "cost-to-go" function.    In light of this fact it is not 

surprising that the necessary conditions for optimality which we derive for 

the minimax problem of this chapter involve vectors in thfe subdifferentials 

(generalized gradients) of the "cost-to-go" functions J. ,  H,  of the equations 

(2.8) through (2. 12).    The notion of the subdifferential df(x) of a convex 

function of at a point x is introduced in Definition A. 12 of Appendix I and some 

of the pertinent facts are summarized in subsequent propositions.    It should 

be noted that the use of subdifferential theory in the analysis is necessitated 

by the fact that the "cost-to-go" functions J,   and H.  will in most cases be 

nondifferentiable even if the functions f,   and g,   in the cost functional (2. 5) 

are real valued and differentiable.    This is mainly due to the maximization 

indicated in equation (2. 9) as will be shown later. 

We now prove the following necessary conditions in order that the 

supremum and infimum in the equations 

BHMBHaMHM 
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Ek+1(x) =      «up    Jk+1(x + Gkwk), k=0(l,..,N-l (2.9) 
wkeWk 

Hk(xk) =  inf {Ek+1(Akxk + Bkuk)  + gk(uk)},     k = 0, 1, .., N-l 
Uk (2.10) 

are attained at given points. 

Proposition 2.3;   For a fixed point x€Rn let WjCW. be a point where the 

supretnum i> attained in equation (2. 9).    Then for all vectors xi.. ifdJk . i (x+ 

G. w. ) we have 

<xk+i-GkV =    ^ <xk+rGkwk> 
wk wk 

where öJitj.i(
x + Gk'Wk) denotes the subdifferential of the function J.   . at the 

point (x + Gkwk). 

Proof:   Let xic+i
€äJic+i(x + Gic

wit)*    By Proposition A. 18 of Appendix I we have 

WX + (W = <xk+r
x + Gk^k> ■ Jk+i<xk+i> ^•19) 

By equation (2.18) we have 

Ci^k+P = "^^k+i^k+^-'^k+i'M 

lJk+i<xk+i)-^Gkxk+ilwk) 

Using the above inequality in equation (2. 19) 

Wx + Gk^k> ^ <x + Gkwk.xJ+1> - E*+1(x*+1) - (rCG^J Wk) 

On the other hand 
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^'"k+f - Ek+l(xk+l) ^    8*UP {<x'xk+l> " Ek+l(xk+l
)} 

xk+l 

=   Ek+lW   =   Jk+l<x + GkV <2-21) 

Combining the inequalities (2.20) and (2.21) we obtain 

<xk+i' GkV ^ ^Gkxk+iI wk) =   m/x <xk+i'^v 

which proves the desired equation. Q.E.D. 

Consider now the function H.   defined by 

Hk(x)  =   inf {Ek+1(x + Bkuk) + gk(uk)} (2. 22) 
Uk 

It is clear that if for a fixed point x, eR    the infimuxn in equation (2.10) is at- 

tained at a point ü.   then the infimum in equation (2.22) is attained at the same 

point Ü.  when x = A, x, .    Notice that for all x. cR    we have H. (x. ) =   Ö(A. x. ) 

and that H,   = E.    . 0(-B, )g, ,   a relation which is proved in the same way as 

equation (A. 2) in Appendix I.    From Propositions A. 14 and A. 15 it follows 

then that the conjugate convex function H.   of the function H.   is given by 

£t*(x*) =   E*+1(x*) + ä*ki-B'kx*) (2.23) 

We now have: 

Proposition 2.4:   For a fixed point x, eR    let ü,   be a point where the infimum 

is attained in equation (2. 10).    Then for all vectors x e^H, (A. x. ) we have 

<x ' Bk"k> + gk^ =   min ^<x  ' BkUk> + gk(uk^ 
Uk 

itmm 
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where H.  is the function defined in equation (2.22). 

Proof:   Let x c^H (A,x, ).    By Proposition A. 18 we have 

Hk(xk)  = flk(AkXk) =  <AkXk'X*> " ?ik(x*) 

or by equation (2.23) 

Hk<xk)  = ^A^^ " Ek+l<x*> " «k(^kx*> (2-24) 

On the other hand by the optimality of Ü, 

"k^k» =   Ek+l<Akxk + BkGk) + 8k(V 

=   sup {<Akxk + BkGk,x*> - E*+1(x*)} + gk(ük) 

> <Akxk,x*> - Ek+1(x*) + <BkGk,x*> + gk({lk) (2.25) 

Combining relations (2.24) and (2.25) 

<X*'Vk>+8A)^-8k(-BlcX*) 

=   inf {<x*, Bkuk> + gk(uk)} 
Uk 

which proves the desired equation. Q.E.D. 

Notice that if the matrix A.   is invertible then by Proposition A. 20 

of the Appendix 

äHk(Akxk) = A.k-Vk(xk) 

and the necessary condition of Proposition 2.4 becomes 

^kk-Vk^^V - ^^A'k'vßkV^kM.V^aH^) 
uk 
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A sufficient condition for the infimum to be attained at a given point 

in equation (2.10) is given by the following proposition: 

Proposition 2.5;   Assume that for some vector x,   . and some vector z we 

have x?  .eöE.   . (z) and that for a vector ü, 

^k+i^kV+ 8k(^, = min ^"k+i^kV+ 8k(uk)> 
uk 

Then we have 

fik(z-Bkük)=   Ek+1(z) + gk(ük) (2.26) 

i. e., the infimum in equation (2.22) is attained at the point  u.  when x = z - 

B. u. .   In addition we have x. ..cSH. (z - B.Uj). 

Proof;   We have EL(« - ^u^k^ 5 ^k+l^*^ + ^k^k^ an^ ^ using equations (2.22) fl 

and (2.23) 

<xk+r8 - BkV - Hk(E - ^V 

> <xk+1.z> - Ek+1(«) +<-B'tx*+1.{lk> - gk(Gk) 

=   EI+l<xk+l)+8k<-Bkxk+l> =  d^k+l) 

= 8UP {<xk+rz - Bkak> - Hk(z - Vk)} 
z 

Hence equality holds in the above algebra implying equation (2.26) and that 

x*+1eöHk(z-Bkak)}    Q.E.D. 

J 
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It is interesting to make the following observation in Propositions 

2. 3 and 2.4. Consider a fixed point x, eR , and let u. be a vector where 

the infimum is attained in equation (2. 10).    Let also w,   be a point where 

the supremum is attained in equation (2. 9) for x = A. x.   + B. ü. .    Then for 
* 

any vector x    such that 

x*eöHk(Akik) 0 äJk+1(Akxk + BkGk + G^) (2. 27) 

we have from Propositions 2.3 and 2.4 that 

<x*. Bk{ik + Gkwk> + gk((lk) 

=  min    max {<x*, B. u    + G w. > + g (u. )} (2.28) 
uk  wkeWk K K        k  k k   K 

or equivalently 

<x*. Akik + Bkak + Gkwk> + gk(Gk) 

=  min   max {<x , Akxk + Bkuk + Gkwk> + gk(uk)/ 
uk wkeWk 

Notice that the expression within biaces in the above relation is the 

familiar Hamiltonian.   It is evident that if along an optimal trajectory one 

could guarantee for every k the existence of vectors x    such that the relation 

(2. 27) holds and find a law for propagation of these vectors (i.e.,  an adjoint 

equation) then the Proposition 2. 3 and 2.4 would be pieced together into a 

Minimax Principle.   The remainder of this section will be devoted to an 

effort in this direction. 

We first give the definition of a minimax sequence and a minimax 

trajectory: 
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Definition 2.1: A sequence of control and disturbance vectors 

<VV V^l ^N-l'^N-l} 

is called a minjmax sequence and the corresponding trajectory  {x  .x.  

XJ^J} given by 

*k+i = Vk+ Bkük+ Gk^k •      k = 0'1 N-1 

x    =  x o o 

is called a minimax trajectory if for all k 

Hk(xk)  =   Hk(Akxk) =  Ek+1(Akxk + Bkük) + gk({lk) 

- inf {Ek+i<Vk+ Bkuk) + «kK)} <2-10) 
U

k 

Ek+l(Ak5k + BkÜk) =   Jk+l^k+P 

=   % ^^Vk + Vk^kV 
wk€wk 

A minimax trajectory results during operation of the system (2.1) 

when an optimal control law is used and when disturbances are selected 

(by Nature) in an optimal fashion.    It is evident from the Definition 2.1 and 

the dynamic programming algorithm of Proposition 2. 1 that if a minimax 

sequence and a corresponding minimax trajectory could be found then the 

optimal cost for Problem 2. 1 would be obtained as 

7x = VV\VfA) + gk-i(Vi)} 
o k=l 

and the problem would be at least partially solved.    In what follows we obtain 
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a necessary condition in order for a control and disturbance sequence to 

be a tninimax sequence under some special assumptions. 

We shall make the following assumption concerning the convex func- 

tions H. , H.  defined by equations (2. 8) through (2.12) and equation (2. 22) 

Assumption 2.3; 

(a) For all k the range of the matrix A,   contains a 

vector in ri(dom H. ) 

(b) For all k we have 

ri(domfk) 0 ri(domHk) J$ 

where the relative interior of the effective domain ri(dom ') of a, convex 

function is defined in Definition A. 7 of Appendix I. 

The assumption (a) above is needed in order to guarantee by Proposi- 

tion A. 20 of Appendix I that 

aHk(xk) =  Ajt^k(Akxk) 

where H,  is the function defined in equation (2.22),  a relation essential for 

the proof of Proposition 2.8.    This assumption will hold for most problems. 

In particular it will hold if the matrix A.   is invertible or if the functions f, 

are real valued in which case it can be easily seen that the functions H. 

will also be real valued and hence domH.  = ri(domH, ) = R  .   The reason 

for introducing assumption (b) above is to guarantee by Proposition A. 19 of the 

Appendix I that 

5 Jk(xk) = äHk(xk) + afk(xk) 
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a relation also essential in the proof of Proposition 2. 8.    This assumption 

will again hold for most problems and in particular it will hold if the func- 

tions f.   are real valued, k 

Assume now that {ü , w ,ü., w. ^N-l* ^N-l^ ^8 a m^n^znax se~ 

quence and {x Jx., ..., xN} is the corresponding minimax trajectory.    The 

necessary conditions of Propositions 2.3 and 2.4 hold for the vectors ü. 

and w. .    Some preliminary facts concerning the subdifferentials ^k(A. x. ), 

(^J. . .(x.   .) will be proved now in the following two Propositions: 

Proposition 2.6;   For all k = 0, 1, . .., N-l we have 

öS. (A.i. )CöE. ..(A.i.  + B.Ü. ) V"k*k/v-0"k+r"kÄk T "k^k' 

Proof:   Let x e^Ö. (A. x. ).    By the subgradient inequality (A. 4) in Appendix I 

we have 

Hk(«) > ök(Ak5k) + <z - Akxk,x*>. V»eRn (2.29) 

Since from equation (2.22) 

Sk<Vk> = Ek+i<Vk+ BkGk>+ «A^ 

"k(8) ^ Ek+i^ + V '^k^1 

using the above relations in (2.29) we obtain 

Ek+i^+ BkGk> ^ Ek+i<Vk+ *&>+ <z' Vk« **>>v l€Rn 

« - _ 
which implies that x eöE.    .(A.x.   + B.u, ). Q.E.D. 

■MMMM 
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Propoiition 2.7:   For a fixed point x let W. (x) be the set of points where 

the «upremum is attained in equation (2.9).    Then 

aEk+1(x) D)conv{x*caJk+1(x + Gkwk)| wkc Wk(x)} (2. 30) 

and if xc int (dorn Ek  .) we have 

:k+1(x) =  conv{x*€ÖJk+1^.^kwkllwk. „k. OE.-.W =   conv{x*caJ. ..(x + G.w.)^.«^^^)} (2.31) 

where conv{* } denotes convex hull of the set within braces. 

Proof:   Let wk€Wk(x) and x €ÖJk+1(« +Gkwk) then 

Jk+1(«+Gkwk) > Jk+1(x + Gkwk)+<z-x,x*>,    VXCR" (2.32) 

Since Jic+i(
x + Gj^k) = Ek+1^ ,ind Jk+1^ + Gk^ - Ek+1^^ from the relation 

(2.32) we obtain 

Ek+1(«) >  Ek+1(x) + <«-x,x*>, Vz€Rn 

tit 
implying that x cdEk  .(x) and therefore 

aEk+1(x) D aJk+1(x + Gkwk) . V wkeWk(x) 

Since ^E. ,.(x) is a closed convex set 

öEk+1 (x) O conv{x «aJk+1 (x + Gkwk) | wkeWk(x)} 

To prove the equality (2. 31) observe that the functionj (x, w. ) = J.    .(x + 

Gkwk) satisfies all the assumptions of Proposition A. 22 of Appendix I.    The 

equality (2. 31) follows directly from the conclusion of this proposition. Q, E. D. 

From Propositions 2.6 and 2.7 it cannot be guaranteed that the set 

intersection indicated in relation (2.27) is a nonempty set,  and in fact 
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examples can be found where 

^(Akxk)n öJk+1(Akik + Bkük + Gkwk)  -t 

If however the equality 

^Ek+l<Vk + **?*}  -  öJk+l(Akik + Bkük + Gkwk) (2. 32) 

holds, then from Proposition 2.6 we obtain 

öH{Akxk) c * Jk+1(Akxk + BkGk + Gkwk) 

in which case, assuming ^H. (A.x. ) 4 4* > the minimax condition of equation 

(2.28) would hold for every x edHjfAjXj). 

By Proposition 2.7 the equation (2.32) is satisfied for every point 

x = (A.x,  + B.ü. )€int(domE.   .) for which the supremum in equation (2.9) 

is attained at a single point.   It may be satisfied also for other points on 

the boundary of dorn E.    ..    Points (A. x.   + B, ü. ) for which equation (2. 32) 

is satisfied will be called nonsingular according to the following definition. 

Definition 2.1:    For fixed k,  k = 1, 2, .., N,  a point x is called nonsingular 

if for every vector w.   such that the supremum in equation (2. 9) i« attained, 

we have 

öEk+1(x)  =  öJk+1(x + Gkwk) 

A point x which is not nonsingular will be called singular. 

It should be noted that in view of Proposition 2.7, every point x at 

which E, ,. is differentiable is by necessity nonsingular, assumming that 

aJk+1(x + Gkwk)^. 
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We shall also need to distinguish initial states x    for which the 

subdifferential dJ (x ) is nonempty by the following  definition. 

Definition 2.2:   The initial state x    will be called regular if the subdifferential 

dJ (x ) is nonempty. 

Notice that by Proposition A. 17 of the Appendix all initial states 

x e rifdom J  ) are regular whereas all initial states for which J  (x  ) = oo o      * o e ov o' 

are not regular. 

We are now ready to prove the following necessary condition for a 

minimax sequence. 

Proposition 2.8:   Let {ü i w »ü,, w., . . . »üN_,, wN_, } be a minimax sequence 

and let {x  ,x., . .. i xN} be the corresponding minimax trajectory.    Assume 

that the initial state x   is regular and that the points (A. x.   + B. ü. ),  k = 0, 1, . . 

N-l are nonsingular.    Then there exist vectors x.,x., ..., xN, p., p-, ..., pN  . 

satisfying the adjoint equation 

xk =  Akxk+1 + pk ' k=1 N"1 (2-33) 

with 

XN^fN(xN) 

pkeafk(xk),       k = 1,2 N-l 

and such that 

<xk+rVk + Gkwk> + 8k(V 
Of 

=  min   max {<xk+1, Bkuk + Gkwk> + gk(uk)},  k = 0, 1, ... N-l 
Uk    WkeWk ' (2.34) 
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Proof:   By the fact that x   is a regular point we have c*J  (x ) 4 y •    Since 

by the Assumption 2.3 we have ^J  (x ) =  A'^ H (A x ) we conclude that 7 r u ox o' o"    o*   o o' 

ÖH (A x ) 4&.    Take x, to be any vector in 5 H (Ax ).    By Proposition 
O      0   O I O      O   O ' 

2. 5 and the fact that the point (Ax    + B ü ) is nonsingular we have 

^Wo^^^Vo-^Vo) =  *J1(*1> 

and therefore by Propositions 2. 3 and 2.4 the minimax condition of equation 

(2. 34) is satisfied for k = 0.    By the Assumption 2. 3 we !have 

ÖJjfxj) =   A'öHjfAjX^+äfjlXj) 

and thus we can find vectors x, and p. such that 

x*   =  A'jx* + p* 

and x^cöHjCA.x.),  p^e^fi^J.   Again by Proposition 2. 5 and the fact that 

the point (A.x, + B.ü.) is nonsingular we have 

äHltVl^fVVo + Vo* =  ÖJ2^2) 

and therefore by Propositions 2.3 and 2.4 the minimax condition of equation 

(2.34) is satisfied for k = 1.   By proceeding in a similar manner we construct 

the sequence x., x., . . ., x»., p., p« p^r   % •    For these vectors the adjoint 

equation (2.33) as well as the minimax condition (2.34) is satisfied. Q.E.D. 

The Proposition 2. 8 states that a minimax principle holds along a 

minimax trajectory provided this trajectory does not go through singular 

points and the initial condition is regular.    This is reminiscent of the mini- 

max principle of differential games which holds provided the optimal trajec- 

tory does not go through singular surfaces. 



-43- 

Except for the assumption concerning nonsinguler points every 

other assumption used in the proof of Proposition 2. 8 is required in order 

to rule out rather pathological cases which seldom occur in practice.   Hov- 

ever the assumption that the trajectory does not go through singular points 

is a formidable one.   Except for particulady well behaved problems, 

singular points are a common occurance and invariably minimax trajec- 

tories corresponding to some initial states will go through these points. 

One can prove in fact that if x   is an initial state which is such that there 

exists a minimax trajectory starting from x   which does not go through 

singular points then we must have 

Jl/xo)= Vxo) = 7x <2-35> o 

where 7      = J (x ) is the optimal cost of Problem 2.1 corresponding to x 
o 

and JT(* ) is given by 

JL(XO)= •;*       inf   * fW^k-i^k-ifvi^ 
W. € W. (*. K- X 

ksO,lt..fN4 k=0,l,..tN-l 

The equation (2.35) implies the existence of a saddle point in the zero-sum 

game where the players are the controller and nrture and the payoff function 

is 

N 
* (yx^ + g^jt^.,^.,))} 

k=l 

Since we have J. (x ) < J (x ) with strict inequality holding in general for 

a "large" set of initial states,  the equation (2.35) illustrates the limitations 

of Proposition 2. S. 
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It appears that,  in general,  it is a formidable task to determine the 

set of initial states which are such that their corresponding minimax trajec- 

tories do not go through singular points.    The same is true for determining 

whether a particular point is singular or not.    Thus even if a candidate for 

a minimax sequence is found through Proposition 2. 8 it may be very dif- 

ficult to verify whether in fact it is a minimax sequence. 

In conclusion the necessary conditions presented in this section should 

be expected to provide a complete solution to only a limited class of problems. 

The class of problems for which the singular points either do not exist at all 

or can be detected by graphical or analytical methods. 

One class of problems where singular points do not occur is the case 

where the functions f,   of the cost functional (2. 5) are linear 

fk^xk^ =  <Xk' ck> ' k = 1, 2, ..., N-l 

where <•, •> derates inner product and c.  are given vectors in R  .    If the 

functions g. ,  k = 0, 1, .., N-l satisfy the requirements of special case C 

then it can be easily proved that the functions E. , H. , J. of the DP algorithm 

are linear functions.    In particular the functions E.  are differentiable,  and 

therefore singular points do not appear.   A minimax sequence for this prob- 

lem can be obtained by making use of the minimax condition of Proposition 

2.8. 

The minimax principle of Proposition 2. 8 however can be used in still 

a different way.    Assume that a sequence Ju ,w , ü, ,w. ,..,üN  ,, wN   ,) with 

a corresponding trajectory {x ,x., . . .. x^.} has been found via the minimax 

condition (2.34),  and that one cannot verify whether indeed this sequence is 

minimax sequence.    Let 

mm* 
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N 

o       k=l 

be the value of the cost corresponding to the sequence.    Then one can easily 

prove by making use of Propositions 2. 3,  2.4, and 2. 5 that the inequality 

Jx    < J (2.36) 
xo xo 

holds, where J      is the optimal value of the cost functional (2. 5).    In some 
o 

cases now minimax problems are solved in order to determine the optimal 

value J      and compare it with the worst-case performance,  say J    , of a 
o o 

controller selected on the basis of other considerations.    The reasoning 

used is that if the difference (J      - J    ) is relatively small then it can be 
o o 

concluded that the worst-case performance of this suboptimal controller is 

not unduly poor.   Since, by using the relation (2.36), we have 

0<J      -J      <J      -J 
—     X xÄ —    X- X 0 0 O Ao 

a "small" value of (J      - J» ) can guarantee that the worst-case perform- 
X X o o 

ance of the controller under consideration is acceptable. 

6. Discussion and Sources 

The basic approach towards the solution of the problem of this chapter 

is dynamic programming.   The computational requirements for this algorithm 

depend on the dimension of the system and the nature of the sets W.  in which 

the disturbance is known to belong.    If the sets W.  are compact polyhedra 

with a relatively small number of vertices the computational requirements 

are only slightly greater than those for a deterministic optimal control prob- 

lem with the same state and control vector dimensions. 
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In some cases a dual algorithm involving the conjugate convex func- 

tions of the "cost-to-go" functions can offer computational advantages, 

particularly if the sets W, are only indirectly known via their support 

functions. 

New results in this chapter are the existence results of Proposition 

2.2 and some of the necessary conditions in Section 4.    The minimax prin- 

ciple of Proposition 2. 8 should not be considered as a powerful tool for 

solving a wide variety of problems.   It can be useful however in some 

cases and it is of theoretical interest since,  together with the developments 

preliminary to its proof,  it provides insight into the mechanism of optimality 

for the problem of this chapter. 

Two special cases of Problem 2. 1 are of interest in deterministic opti- 

mal control theory.   In the first case the sets W.   consist of a single point w. , 

W.  = {w. } ,  k = 0, 1, . .., N-l.    For this optimal control problem the Pro- 

position 2.2 yields existence results that to the author's knowledge, are 

stronger than those available in the literature.   Some of the results on 

existence of optimal controls in Lee and Markus*     ' are along the same 

lines.    For the same case the Proposition 2.8 yields a Minimum Principle 

which holds for a linear discrete-time system and a convex but not differ- 

entiable cost functional.    This Minimum Principle is a sufficient as well 

as necessary condition for optimality as can be easily verified by using 

Proposition 2. 5.    Notice that for this case there exist no singular points 

due to the nature of the sets W. .    A similar Minimum Principle for a linear 

continuous-time system and a convex but not differentiable cost functional 

has already appeared in (Hel).    Necessary conditions along similar lines 

can also be found in (R2), (Lu2)( (B3).    A second special case of interest in 
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deterministic optimal control theory is the case where the system is de- 

scribed by the equation 

xk+1  =  Akxk + Gkwk, k = 0,1, ...,N-1 (2.36) 

and it is required to find 
N 

J      =      sup S  f (x  ) (2.37) 
o       wkfWk     k=l K    K 

k=0,l,..,N-l 

where f. ,  k = 1, 2, . .., N are real valued convex functions.    This problem 

can be recognized as the special case of Problem 2.1 with the functions 

g.   defined as 

gk(uk) =  co       for uk ^ 0, gk(0) = 0,       k=0, 1 N-l 

For this problem Proposition 2. 8 yields a Maximum Principle which can be 

proved without the assumption that the optimal trajectory does not go through 

singular points, and that the initial state is a regular point.    The proof is 

based on Propositions 2.3 and 2.7 and an argument similar to the one used 

for the proof of Proposition 2. 8.    This Maximum Principle holds for a linear 

system and a nondifferentiable convex functional and provides a necessary, 

but not sufficient, condition for optimality for the problem of equations (2. 36) 

and (2. 37).    It can be easily generalized for the case of system (2. 36) where 

it is required to find 

N 
J*n   =       Tu.     t

S
T
{fk(Xk)  +   hk-lK-l)} 

o      w, ew,  k=l 

k=0,l,..,N-l 

where h      k = 0, I, . . . ,N-1,  are any continuous real valued functions on R   . 
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Open-loop discrete time minimax control problems can be viewed 

as single-stage feedback problems (N= 1),  and therefore for the case of 

a linear system and a convex cost functional they can be considered as a 

special case of Problem 2.1.    In addition to the results of this chapter 

the necessary conditions in (Dal), (Da2), (Bral), (Dl), (D2), (D3) and the 

computational algorithms in (DI), (Sal), (Psl), (B3) can be used for the 

solution of such problems.    Some of the material in these references is 

applicable to nonlinear and nonconvex open-loop problen.3 as well. 

Linear discrete-time minimax control problems with perfect state 

(WD  (W2) information were considered first by Witsenhausen*      ^ x      ' who developed 

the dynamic programming algorithm and its dual for the case of the cost 

functional JOx , |i  , ..., t*..  .) =    sup fN(xN).    He considered in detail 

k=0,l,..,N-l 

the implementation of the dual algorithm for this case and gave a necessary 

condition which parallels Proposition 2.4 of this chapter.    He also observed 

that a minimax principle in general does not hold due to the presence of 

singular points. 

The dynamic programming algorithm of this chapter can be extended 

to much more general minimax control problems as will be seen in Chapter 5. 

All the other results of this chapter rely on linearity and convexity.    Their 

extension however to continuous-time linear systems appears to involve 

great technical difficulties. 



CHAPTER 

REACHABILITY OF A TARGET TUBE WITH 
PERFECT STATE INFORMATION 

1. General Remarks 

In this chapter we consider a special case of the problem of the 

previous chapter which will be referred to as the problem of the Reach- 

ability of a Target Tube by the state of the system when the controller 

has available at each time a perfect measurement of the system state. 

The motivation for considering this problem arises from two basic prob- 

lems of deterministic control theory, the controllability problem, and 

the tracking (servomechanism) problem.    The controllability problem 

is concerned with transfering the state of a system from an initial state- 

time pair to a final state-time pair.   The tracking problem is concerned 

with keeping the state trajectory of the system "sufficiently close" to a 

prescribed trajectory. 

The problems considered in this chapter can be viewed as the 

analogs of these two problems when there are disturbances driving the 

system.    In accordance with the general approach of this thesis we as- 

sume that these disturbances are unknown except for the fact that they 

belong to given sets.    Under these circumstances,  the most natural 

analog of the deterministic controllability problem is that of steering 

the system state at the final time into a desired target set under all 

possible combinations of disturbances.   In other words, we would like to 

design a feedback controller in such a way as to guarantee that the final 

state of the system will always lie in a prescribed target set despite the 

presence of uncertainties.    In a similar vein,  a natural analog of the 
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. 
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tracking problem under these same conditions is to keep the entire state 

trajectory in a "tube" containing the desired trajectory under all possible 

disturbances.    We refer to these two problems as those of "Reachability 

of a Target Set" and "Reachability of a Target Tube".    Possible applica- 

tions of these two problems can be expected in the control of systems 

under uncertainty when either a set-membership description of the un- 

certain quantities is more readily available than a probabilistic one, or 

where specified tolerances must be met with certainty. 

In the next section we formulate the problem of Reachability of 

a Target Tube which involves a linear discrete-time system.    The prob- 

lem of Reachability of a Target Set under the same circumstances can be 

viewed as a special case of the problem of Reachability of a Target Tube 

and will not be considered explicitly.   The solution of the problem by dy- 

namic  programming will be given in Section 3 by making direct use of 

the results obtained in Chapter 2.    In Sections 4 and 5 we shift the em- 

phasis to the development of algorithms which have potential for practical 

applications.    We consider the case where all the given sets are ellipsoids 

in the appropriate Euclidean spaces and we develop an ellipsoidal approxi- 

mation algorithm which results in a control law which is a linear function 

of the system state,  thus offering attractive implementation advantages. 

2. Problem Formulation 

We will consider the following problem: 

Problem 3.1:   Given is the linear discrete-time dynamic system: 

xk+l  =  Akxk+ BkUk + Gkwk'    k=0'1 N"1 (3-1) 

^MMMMMMiMMMBI 
„J 
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where x. e R , k= 0, 1, . ., N, are the state vectors, u. c R , k= 0, 1, . ., N-l, 

are the control vectors, w.e R , k=0, ..,N-1, are disturbance vectors, and 

A. ,B, , G. , k= 0, 1, . .,N-1 are given matrices of appropriate dimension. 

The initial state x    is known and the disturbance vectors w.   belong to 

given compact sets W.CR  , w, e W. ,  k = 0, 1, . .., N-I. 

Attention is restricted to control laws of the form 

jxk:Rn -  Uk,        k= 0, 1 N-l 

taking values 

uk   =   ^k^k^'       k = 0»1'*' -.N"1 

where U.CR    ,  k = 0, 1, . .,N-1,  are given closed convex sets.    It is required 

to find (if it exists) a control law in this class such that for all k the state 

x. ., of the closed-loop system 

xk+i = Akxk+ VkK)+ Gkwk <3-2) 

is contained in given closed convex sets X, ..,   k = 0,1, .. ,N-1,  for all pos- 

sible values of the disturbance vectors w, . k 

We shall say that the target tube {X,, X-t . • •, XN} is reachable if 

there exists such a control law. 

It is easy to see that the Problem 3.1 is a special case of the Prob- 

lem 2.1 of the previous chapter with the cost functional defined as 

N 
J^i »W = SUP        * <6KiV+6hc-i<Vi)iuk.i]} ^3) 

W. C   W, K -  1 

k= 0,1,.., N-l 

where 6(x|X) denotes the indicator function of the set X ( 6(x|X) = 0 if 

xeX,  6(x|X) = co if x^ X ) 

With this definition the target tube {X,, X2,...,XN} is reachable if the optimal 

value J    of the cost functional (3.3) is 0.   It is not reachable if J      = co' 
n X O O 



-52- 

It should be noted that the problem of this section has also been 

considered in a somewhat more general form in(Bl).    The approach used 

in this reference is purely geometrical and does not rely on the solution 

of th« Problem 2.1. 

3. Th^ Dynamic Programming Algorithm 

Application of the dynamic programming algorithm c£ Proposition 2.1 

of the previous chapter yields the optimal cost 

Tx0   =   W   =   6<xolXo) <3-4) 

from the recursive equations 

Ek+1(x)   =   6(x|Tk+1),     k=0,2 N-l 

Jk(xk)   =   6(xkIX*),  k= 0.1.....N 

where the sets T.   and X,   are given by the relations 

Xj =   XN (3.5) 

Tk+1   =   {x|(x + GkWk)CXk+1},   k= 0.1,.... N-l (3.6) 

X*   =   {xkl(A
k

x
k + Bk

u
k)fTk+1> for some nkeUk}nXk,  k= 1,2...,N-l 

(3.7) 

X     =   {x  |(A x   +B,u, )eTT, for some u ell } (3.8) o o *   o o      k k'     1' o     o x       ' 

If x c X ,  by equation (3.4), the optimal cost is 0 implying the exis- 

tence of a control law that achieves reachability of the target tube {Xj.X-,.., 

X«.}.    If x ^X   then the target   nbe is not reachable. Woo ° 

Some of the properties of the sets T.   and X,   of equations (3. 5) through 
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(3.8) can be obtained by making use of propositions derived earlier in 

Chapter 2.    Thus by Proposition 2.2 these sets are convex whenever nonempty, and 

if the sets Uk are compact they are also closed.  If.in laddition the matrices A. r k = 

0, 1, ..., N-l,  are invertible then it can be proved that the sets T.  and 
* 

X,  are compact.   Also since the support function and the indicator func- 

tion of a closed convex set are conjugate to each other the support func- 

tions of the sets T.   and X.  can be obtained by making use of the equations 

(2.16),  (2.17) and (2.18) of the previous chapter. 

A control law that achieves reachability can be obtained as follows. 

To every x.e X,  associate a vector M-iJx. ) = u. € U,  such that 

<Akxk -+ BkukJe Tk+i 

By definition of the set X.  such a vector exists.   It can be seen that if the 

target tube {X.,  X-, ..., Xj.} is reachable from the initial state of the sys- 

tem, then if we use a control law defined as above the state x,   will belong 

to the set X,   for all k,and thus definition of the control law for vectors 

* outside the set X,   is redundant, k 

For purposes of future reference the tube {T,, T2. . • •, T..} will be 

called effective target tube.    The tube {X  , X., .. ., XN} will be called 

modified target tube and in fact it specifies the region of state space where 

the state will lie when a control law that achieves reachability is used. 

For practical applications it is important that the sets T,   and X, 

of the effective and modified target tube can be characterized by a finite 

set of numbers.    This is possible when the given sets X,   and U.   are convex 

polyhedra.    The sets T.  and X,   are in this case polyhedra and thus can be 

characterized by a finite number of bounding hyperplanes.    The corres- 
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ponding algorithm1        is however beset by the fact that the number of 

bounding hyperplanes increases at every step of the algorithm.    In ad- 

dition the implementation of a control law that achieves reachability can 

be quite cumbersome. 

In the case where the given sets are not polyhedra,  characteriza- 

tion of the sets T. ,  X,  of the effective and modified target tubes by a 

finite set of numbers is in general infeasible.    One can however conceive 

of constructing sets that internally approximate the sets T. , X.   and which 

can be characterized by a finite set of numbers.    One such possibility is 

to approximate the sets T.  and X.  for each k by ellipsoids T. CT. , 
—*     ♦ 
X. CX.   since an ellipsoid is completely characterized by its center and 

a weighting matrix.    Then in order for the original target tube {X., X,«...! 

XN} to be reachable from the initial state x ,  it is sufficient (but not nec- 

essary) that x € X  .   This approximation approach is the basis for an el- 

lipsoidal approximation algorithm given in the next section, where results 

on the optimal control of linear systems with quadratic cost criteria are 

used not only to obtain ellipsoidal approximating sets but also to derive 

control laws which are linear. 

4. An Ellipsoidal Approximation Algorithm 

Consider the special case of Problem 3.1 for which the constraint 

sets are the ellipsoids described by: 

Xk   =    ^kl^k^k - 1}'     k=  1,2....,N-1 (3.9) 

XN   =    {xN|x^xN <  1} (3.10) 

MM^Hfl*MHBMHMMHMMaHai 
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Uk   =   {uj^lu^R^ <   1} ,     k= 0,1,...,N-I (3.11) 

Wk   =   {wj^lw^Q^ <   1},     k= 0,1,...,N-1 (3.12) 

where the matrices^, R. , Q. are given positive definite fymmetric ma- 

trices for all k = 0, 1, .... N-l, and the matrices C. are given. We also 

assume that the matrices A.   in the system (3.1) are invertible. 

We first internally approximate the set TN of equation (3.6) by an ellipsoid. 

To this end, we state the following lemma the proof of which can be found in (Sl> 

Lemma 3.1; Consider two ellipsoids £,,£, in Rn with support functions 

o-fxlEj) = (x'Qjx)1'2, (r(x|E2) = (x'C^x)1^. Their vector sum Ej + E2 

is contained in the ellipsoid E with support function 

,r(x|E)   =   MP^QJ +(1-P)"1Q2]}1/2 

where ß is a free scalar parameter with 0 < ß <  1. 

For ellipsoid TN to be contained in the set TN of equation (3.6) 

it is sufficient thatTN*Cl. .W.. .CXL..  The support functions of the ellipsoids 

GN  , WN  . and XN for the case considered in this section are, (r(x| GJJ ,W     ) = 

(x,GN_1Q^1G^_1x)1/2 and or(x|XN) =  (x'^^x)1^.   By Lemma 3. 1 if follows 

that the relation TN + ^N-l^N-l C^N ^8 8at^8^e^ ^ t^e support function of 

TN is given by 

Notice that if the discrete-time system (3.1) results from sampling of a 
continuous-time linear system the matrices A^ will always be invertible. 
However,  it is easy to see that in what follows invertibility of the ma- 
trices A,  is not necessary if the matrices C{C,  are positive definite for 
all k.      K K   K 
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r(«|TN) - {x*rm
N
l*)in 

I where the matrix FN   It given t/ 

(3.13) 

and ()N is A free parameter euch that 0 < PN <  1.   If the given constraint 

•eti are euch that the «et TN ha« a nonempty interior,  there exist* a 

scalar PN with 0 < PN <1 such that the matrix FN of equation (3.13) is 

positive definite and the ellipsoid 

TN     r     {X|X'FNX  <    1) 

is contained in the set T N' 

By using the ellipsoid TN a set contained in the set X^   . of equation 

(3.7) is now defined as the set of points xN  , with the property that both 

'N-l^N-l'-N-PN-l - <  1 (3.14) 

and 

(AN.lxN.l+BN-luN-l)cTN for some u^jCU^j. 

The second requirement becomes in this case that 

x'Fj^x <  1 for some u^j with «N_JRN.I«N,1 1 1        (3.15) 

and with 

AN-1XN-1 + BN-1UN-1 (3.16) 

The set of points xN  , satisfying relations (3.14), (3.15) and (3. 16) clearly 

contains the set of points xN , with the property that for soi \e uN  .c R1 .m 
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«klCk.lCN.|xN.l +u^.lRN.luN.l +X,^N,, 1  l <3-,7> 

x   "   AN.1XN.| ^NVN.l <318) 

By wall known reiultt on the linear quadratic regulator problem 01 opttmel 

control' ' the set of points xN j ■etiifying the equetiom (3. 17) and (3. 18) 

for eonrte uN_.< R    is given by 

where the positive definite matrix KN  , is given by the discrete Riccati 

equation 

KN.l    =   AN.|<rN+BNW.lW'Vl+CN.lCN.I      <3-20) 

Furthermore a control law which achieves reachability is given by 

«N-l   =  ^N.l<xN.l) s   -<RN.l ^N-^N^-I^^N.^NAN-^N-I 

(3.21) 

By proceeding with similar approximations we deline sets 

^N-l'^N-2 ^i'^o'   ^ *c>me ellipsoid T.   is empty, then the algorithm 

breaks down.   This of course does not imply that the original target tube is 

not reachable,  since approximations were involved in obtaining T. .   In this 

case if we wish to proceed with the ellipsoidal algorithm we will have to 

start with a "larsir" target tube or "larger" control constraint sets.    We 

summarise the algorithm below: 

An Internally approximate modified target tube (X  , X X..} and 

effective target tube {T., T-, ..., TN} are given recursively by the equations; 

X*   =   {xjJx^Kj^ <   1},     k=l,2,...,N (3.22) 
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T. (xlx'F. x <   I) .     k S  1,2 N (3.23) 

whcro 

Kk.i   Ak-i<Fi;1 + Bic-iRk!iBk.i''\.i+cic.ick.i 

KN       * 

(3.24) 

(3.25) 

(3.26) 

and the free parameters ß. ,  k =  1, 2, . . ., N, are auch that 0 < p.   <  1 and 

the matrices F.   are positive definite for all k. 

A sufficient condition for reachability is that the set 

—« 
X o U   Ix'K x    <   1} o    o   o o - (3.27) 

contains the initial state x  ,  where o 

A^F"1 + B'R^B   )"1A o'   1 o   o     o        o (3.28) 

Furthermore a control law that achieves reachability is given by the equation 

Kk(xk)   =    -(R^B^F^B^^B^F^A^.    k = 0. 1 N-l (3.29) 

We remark that another control law that achieves reachability is the 

control law with a dead zone given by equation (3.29) if xIA'F., .A.x,   >  1 

(i.e. ,   if A. x. ^ T.    .),  and ^(x. ) = 0 otherwise.   In certain applications the 

use of a dead zone can be particularly beneficial. 

It should be mentioned that a similar ellipsoidal algorithm can be 

obtained for the case where the given sets X. ,,, U. , W. ,  k = 0, 1...., N-l, 

are ellipsoids which are centered at given points other than the origin. 

MMMM^MMlMMaWIHHaiBHMIIIMa 
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The caie where the syitem (3. 1) ia time-invariant, the given 

constraint sett are constant and the final time N approaches infinity U 

highly interesting.    The behaviour and the convergence properttos of the 

ellipsoidal algorithm under these circumstances will be examined in the 

next section. 

5. Infinite Time Behaviour of the Ellipsoidal Algorithm 

Consider now the case where the system (3. 1) is time  invariant 

xk + l   -   Aj<k + Buk + Gwk <3-30) 

the given constraint sets are constant,  i.e.,  R.   = R, Q.  = Q,  CjC.   -S^, 

for all k, and the final time N approaches infinity. 

The ellipsoidal algorithm of equations (3.22) through (3.26) under 

these circumstances,  and assuming a constant scalar ß with 0 < ß <1,  i.e. , 

P.   = P for all k,  is given by the equations: 

X*   =    {xk|xjKkxk <   1} (3.31) 

Tk   =    {x|x«Fkx <   1} (3.32) 

where 

F"1   =   (1 - PKK'1 - ß^GQ^G') (3.33) 

Kk_1   =   A'fF"1 + BR^B'J^A +^ (3.34) 

KN   =^ (3.35) 

under the assumption that the matrix F,     is positive definite for all k. 

Assume that for some scalar ß with 0 < ß <   1 the algorithm of 

equation (3.31) through (3.35) possesses a positive definite steady state 
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■ olution K        given by 
-QD 

■00 -00 
(3.36) 

for which the matrix 

1 
-CO -00 

(3.37) 

■9S* ii positive definite.    Then if the initial state belongs to the set X 

(x| x'K       x <   I) the «täte of the ayttem (3. 30) can be made to stay indefi- 

nitely in the tube {X  , X  , . . . } by application of the linear time invariant 

control law 

jx(x)   =    -(R +B'F /„B)"1BF      Ax 
-00 -00 

TT*. 

(3.38) 

Since we will have X C X =   {x|x^x <  l} infinite time reachability of the 

given target tube (X, X, . . . } is achieved. 

It should be noted that in the actual operation of the closed-loop 

system the initially given tube {X, X, . ..} loses its significance since the 

system state will always remain in the internal tube {X  ,  X ,...} the sets 

X   of which will differ significantly from the sets X of the initial tube both 

in "size" and "orientation".    Thus in any infinite time design procedure the 

given set X and the corresponding matrix^ take the role of a design para- 

meter which can be adjusted to obtain different steady state solutions K 

of the algorithm. 

A question of importance is under what circumstances the algorithm 

of equations (3.33) through (3.35) will converge to a steady state solution 

K        satisfying the equations (3. 36) and (3. 37).    Clearly given the system 

(3. 30) and the matrix Q specifying the disturbance constraint set W,  the 

•■MiMMMMMi ■Hi 
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matrices R andNK must »pncity a lufficiently "large" control conntraint 

■at and a lufficiently "large" target tube relative to the lise of the dis- 

turbance let and the nature of the matrices A, B and G of the lyitem.   Thus 

if the matrices R and w specify relatively small constraint sets the algo- 

rithm of equations (3. 33) through (3. 35) should not be expected to converge 

to a steady state and guarantee reachability from some initial states.    Now 

in any practical situation the designer is given the system (3. 30) and the 

matrix Q specifying the set W where the input disturbance belongs,  and 

usually there is a certain degree of freedom in adjusting the control con- 

straints, and particularly the matrix^ specifying the target tube which 

in view of the comment of the previous paragraph plays the role of a de- 

sign parameter.    In this sense a possible design procedure is to initially 

select the matrices R and ¥ and in case the algorithm does not converge 

to a steady state solution,  to decrease these matrices by multiplication by 

factors less than one and repeat the procedure until convergence and satis- 

faction of the designer.    It is important however to know under what cir- 

cumstances there exist matrices R and x  such that the algorithm converges 

to a steady state,  and furthermore under what conditions such matrices can 

be obtained by repeatedly multiplying any initially selected matrices R. and 

Nkby factors of less than one.    This is the object of the next proposition 

which states that the design procedure outlined above is successful provided 

the system (3.30) is stabilizable,  i.e.,  if there exists a matrix L such that 

the matrix (A - BL) is stable   (has eigenvalues within the unit disk of the 

complex plane). Notice that the system (3.30) is stabilizable provided the 

pair (A, B) is controllable (but not conversely)^ '. 
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Propoiition 3.1:  Assume that the lyitem (3.30) and the positive definite 

symmetric matrix Q are given and that the system (3.30) is stabilisable. 

Then given any positive definite symmetric matrices V. and R. of appro- 

priate dimension, there exists a scalar ß.,  0 < ß.   <  1 such that for 

every scalar ß,  0 < ß < ß. there exist scalars a.,b. depending on ß such 

that for all matrices^ = a^,  R = bRj with 0 < a < aj, 0 < b < b,, the 

algorithm of equations (3. 33) through (3. 35) converges to a positive def- 

inite symmetric steady state solution K_     satisfying equations (3.36) and 

(3.37). 

The proof of the above proposition follows similar, yet a little 

more complicated, arguments with a proof of convergence of usual Riccati 

equations to a steady state solution1        '.    Due to its length this proof will 

be presented in Appendix II. 

Another important question concerning the infinite time ellipsoidal 

algorithm is whether the resulting linear time-invariant control law makes 

the closed-loop system asymptotically stable.    This question is answered 

in the affirmative in the following proposition. 

Proposition 3.2;  Assume that the algorithm of equations (3. 33) through 

(3.35) converges to a steady state solution K_    ,  where K_     is a positive 

definite symmetric matrix for which the matrix F_     of equation (3. 37) is 

also positive definite.    Then the closed-loop system resulting from appli- 

cation of the linear time-invariant control law of equation (3. 38) is asymp- 

totically stable. 

The proof of the above proposition will also be given in Appendix II. 

MM 



-63- 

An immediate consequence of the above propoaition is that tran- 

sient! due to initial states will vanish eventually during the operation of 

the closed-loop system.   More accurately for any e > 0 it can be guar- 

anteed that after a sufficient number of steps the state will be confined 

in the set X   + <B, where B is the unit ball in Rn, and this will occur 

for any initial state x   in R   . 

6. Discussion and Sources 

The problem of the reachability of a target tube was examined in 

this chapter with emphasis in the development of an ellipsoidal approxima- 

tion algorithm that appears to have potential for practical applications. 

The attractive feature of the ellipsoidal algorithm is that it pro- 

vides a linear control law which in the infinite time case makes the closed- 

loop system asymptotically stable.    Furthermore for the infinite-time 

case the existence result of Proposition 3.1 guarantees that the algorithm 

is applicable to every linear time-invariant system which is stabilizable. 

Thus the ellipsoidal algorithm appears to offer practical advantages as a 

design method for many regulation and tracking problems which involve a 

linear system,  and for which the statistics of the uncertain quantities are 

unknown and difficult to measure, or for which specified tolerances must 

be met with certainty. 

A number of questions concerning the performance of the algorithm 

remain as yet unresolved.   One such question concerns the quality of the 

approximation involved in the algorithm.   If appears to be very difficult 

to obtain precise estimates of the approximation which are applicable to 

large classes of systems.    Thus some further research and simulations 
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are required in this area.   Another question, and in the author's opinion 

the most important, touches upon the merits of the whole minimax design 

philosophy.   Minimax designs are in general concervative, optimal against 

the worst case.   In the particular case of the ellipsoidal algorithm the 

result is that the feedback gains of the controller tend to be large in mag- 

nitude, a feature which in some cases may be undesirable.   Furthermore 

this situation is adversely effected by the approximations involved.    Only 

simulations and practical experience can give some answers to this ques- 

tion. 

Many of the results of this chapter have been reported in (Bl).    The 

approach used in this reference is purely geometrical and is applicable to 

a large class of problems.   It not required that the system is linear and 

that the given sets are closed, convex or compact.   In fact not even the 

linear vector space structure of the space of definition of the system is 

necessary.   However the ellipsoidal algorithm is applicable only to the 

class of problems considered in this chapter.   The Propositions 3. 1 and 

3. 2 have not appeared earlier.   It is interesting to note that the equations 

of the ellipsoidal algorithm are very similar to Riccati equations related 

to linear multistage games with quadratic cost functionar       '.   In fact 

the proofs of Propositions 3.1 and 3.2 were to a large extent motivated 

by this similarity. 

The problem of the reachability of a target set is the special case 

of the Problem 3.1 where the sets X,  for all k except k = N are equal to 

the whole space R   .    This problem for a linear discrete-time system, 

closed-loop control and perfect state information was first considered 

by Witsenhausen*      "*      'in the framework of a more general minimax 



-65- 

< ontrol problem.   The same problem for a continuous-time syitem but 

an open-loop controller was also considered by Delfour and Mitter in (Del). 

Problems related to those of this chapter that require attention 

are the case of a nonlinear system and the case of a continuous, linear 

or nonlinear,  system.   The results in^Biy are applicable to nonlinear 

discrete-time systems however no practical algorithms applicable to 

nontrivial systems are available at this moment.   The case of a continuous- 

time linear system is considerably more difficult to handle than the case 

of a discrete-time system.   Some results obtained by the author in this 

area are not as yet conclusive. 

Finally we note that the problem of the reachability of a target tube 

with imperfect state information,  including the case where instead of the 

entire state only a linear output of the system is measured exactly, will be 

considered in Chapter 6. 
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CHAPTER 

STATE ESTIMATION PROBLEMS FOR A SET 
DESCRIPTION OF THE UNCERTAINTY 

1. General Remarks 

In this chapter we digress from minimax control problems in order 

to consider some state estimation problems which involve a set-membership 

description of the uncertainty.    Such problems, though important in their 

own right, are essential for the solution of minimax control problems with 

imperfect state information.   Although the concepts to be presented are 

applicable to much more general situations we will be concerned exclusively 

with the case of a linear discrete-time dynamic system 

xk+l   =   Akxk + Bkwk ' k = 0,1,...,N-1 (4..1); 

to which there are available noise-corrupted measurements 

zk   =   CkXk + vk <4-2) 

n r where x.e R    is the system state, w, e R    is an input disturbance vector and 

v. € R" is the measurement noise vector.    We assume that there is no control k 

input to the system.    The algorithms that we derive however can be trivially 

modified to take into account the effect of any known deterministic input by 

virtue of the linearity of the system and measurement equations. 

In a stochastic estimation problem involving the system (4. 1) with 

the measurements (4.2) the uncertain quantities,   i.c   ,   the initial state and 

the input and n     . -.urement noise vectors,  are modelled as mutually inde- 

pendent randorr  vectors with known probability density 'unctions.    In this 

case all information about the system stats at any time that is provided by 

the measurements is contained in the probability density function of the state 

-66- 
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conditioned on these measurements.    This conditional probability density 

function is then used,  explicitly or implicitly, to determine an estimate 

of the system state which is best in some prescribed sence. 

In the case considered here,  the uncertain quantities are not mod- 

elled as random vectors, but are considered instead to be unknown except 

that they belong to given subsets of appropriate vector spaces.    Under 

these circumstances,  all information about the system state at any time 

that is provided by the measurements may be summarized in the set of all 

states consistent with both the measurements received and the constraints 

on the uncertain quantities.   Once this set of possible states is characterized 

a point estimate can be selected using some criterion such as the minimax 

error criterion for example.    In what follows however we will be concerned 

exclusively with the characterization of the set of possible states or some 

approximation thereof.   Since for the special cases that we will consider this 

set will be an ellipsoid,  if a point estimate is desired the center of the ellip- 

soid is the natural candidate. 

Two distinct types of constraints on the uncertain quantities will be 

considered.    The first is the energy-type constraint 

-1 N 
x o '^x   +   S   (w«   .Qr^w.    . +v[R'1y.)  <   1 

o       o      u-i      k-1   k-1   k-1        k   k    k'  — 

where* , Q. ,  R.   are given positive definite symmetric matrices for all k. 

For this constraint we show that the set of possible states at any time con- 

sistent with the output measurements is an ellipsoid whose center and 

weighting matrix are generated by equations identical to those associated 

with the best linear estimator (Kaiman filter) for a certain stochastic esti- 



 mmmmmmmwmmmmm 

-68- 

mation problem.    We shall demonstrate a one-one correspondence be- 

tween estimation problems where the uncertain quantities satisfy an energy 

constraint and linear minimum variance stochastic estimation problems. 

Once this correspondence is established we will be able to use available 

results in stochastic estimation theory to derive estimators for the energy 

constraint case for a number of problems of interest including the filtering, 

prediction and smoothing problems. 

The second type of constraint that we consider is the more practically 

important case where the uncertain quantities are constrained at each instant 

of time to lie in ellipsoids,  i.e., 

-1 , , 
x'^x     <    1,     w«    ,07   iw.    ,   <   1,        <R"  v.    <   1,    k= 1,2,..,N o      o   — k-1   k-1   k-1   —     ' k    k    k  — »   »      • 

In this case the set of states consistent with the measurements is not an 

ellipsoid and it is not,  in general, characterized by a finite set of numbers. 

However,  an ellipsoid bound to it can be determined by bounding the instant- 

aneous constraints by an energy constraint and using the results derived for 

that constraint.    The resulting estimator for the case of the filtering and the 

(SI) prediction problem is similar to that proposed by Schweppe1       but it has 

two important advantages:   first the gain matrices do not depend on the 

particular measurements received and are therefore precomputable and, 

second,  it reduces to a constant system as the final time beccmes infinite. 

In all other respects it is comparable to that proposed by Schweppe.   Further- 

more our approach permits the derivation of an estimator for the smoothing 

problem which has not been previously considered in the literature. 

mmmm 
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2. Formulation of the Problem with an Energy Constraint 

In this section we formulate a general estimation problem involving 

a linear discrete-time dynamic system and a combined energy constraint 

on the uncertain quantities.    This problem includes as special cases the 

filtering, prediction, and smoothing problems. 

Problem 4.1:   Consider the linear discrete-time dynamic system 

xk+l   =   AkXk + BkWk' k= 0'1 N"1 

to which there are available noise-corrupted measurements 

zk   =   Ckxk + yk 

where x. € R    is the system state, w. e R   is the input disturbance vector, 

v. € R" is the measurement noise vector, and the matrices A. ,  B, ,  C,  have 

the appropriate dimensions.    The initial state x   and the disturbances w, , 

V.  are assumed unknown except that they satisfy the energy constraint 

-1 N 
x o i*"« + k=1

(wk-iQk-iwk-i +W*\> i ' <4-3) 

where x,Q._., R,,  k= 1,2,..^, are given positive definite symmetric 

matrices.    Let i, k be arbitrary integers,  0< i< N,  0 < k < N.   It is re- 

quired to find the set X.i.  of possible system states x. at time i which are 

consistent with the constraint (4.3) and the measurements z., z-,..., z. 

up to time k. 

We remark that if i = k this problem is usually called the filtering 

problem,  if i > k it is called the prediction problem,  and if i < k it is called 

the smoothing problem. 
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In the next section we will obtain a general solution to the above 

problem by associating it with a stochastic estimation problem,  the solution 

of which is weil known.   We will then use this general solution to obtain 

estimators for the special cases of filtering, prediction,  and smoothing. 

3. A General Solution to the Problem with an Energy Constraint 

Given any estimation problem where the uncertain quantities are 

unknown except that they lie in some given set it is possible to give a precise 

characterization of the set X.i.  of possible states x. at time i consistent with 
i|k       ^ i 

the measurements z., z,, ..., z,   in terms of the given constraint set and 

the system and measurement equations.    This characterization is usually 

quite elaborate but for the Problem 4.1 it takes a particularly useful form. 

A great deal of insight can be obtained through it,  and most importantly it 

leads to a direct correspondence with linear minimum variance stochastic 

estimation problems.   We will first introduce some notation. 

Let uc Rn     ^r P' be the vector consisting of all the uncertain quan- 

tities according to the relation 

u   =    (x^, w^t W^-.^W^J.VJ'.V^, ...,V^)' (4.4) 

Let us also combine all measurements received up to time k into 

one vector 

Ck=   (z'j.  z*z z^)' (4.5) 

Both the state of the system x. at any time i, and the vector   b^ can 

be obtained from the vector u of equation (4.4) by a linear transformation 

x.   =   L.u (4.6) 
ii 
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Ck =    DkU (4.7) 

where the n x [ n +N(r+p)] matrix L. and the kp x [ n + N(r+p)] matrix D. 

are given for all i and k by 

Lj   =   [♦(i,0)t*(i. l)Bo, ....♦(i.i-l)R_2,Bi_1,0. ...,0] (4.8) 

Cj^i.o),       C1BO, 0,0 0 0. ...0 I. 0, ...0  0. ...0 

C20(2, 0), C20(2,l)Bo,       C^Bj.0 0 0, . ., 0 0.1. 0,..F0 0. . ., 0 Dk = 

Ck*(kf0)    Ck*(k, l)Bo.  C^I>(k.2)B1,..,C^B^_1. 0, ...0 0, . ., 0.1 0. . . . 0 

^ <4-9> where the transition matrix v(i,j) is given by 

♦ (i.j)   =   Ai_1Ai_2...A for j <   i 

♦(i,i)   =   I 

and where the dimensions of the zero and identity matrices in the above 

equations are consistent with the multiplications indicated in equations (4.6) 

and (4.7). 

The energy constraint (4.3) implies that the vector u of equation (4.4) 

belongs to the ellipsoid 

U   =   {ulu'M^u <  1} (4.10) 

where the positive definite matrix M is defined as 

\ 

M •Q N-l (4.11) 

•R N 
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Now,  for fixed measurements £., the set X. ■.  which solves the 

Problem 4.1 can be conveniently characterized as 

X.|k   =   {x|x= L.u,   Ck= Dku, ucU} (4.12) 

A 
By defining the set U.  of all possible vectors u consistent with the mea- 

surement vector b. k 

Uk   =   {u| Ck= Dku. ueU} (4.13) 

we have from equation (4.12) that the set X. i.  is given by the equation 

X.,.    =   L.U. (4.14) 
i|k i   k * ' 

Thus the set X...   can be obtained by a linear transformation on the 
A 

set U.   which is the set intersection of the set U with the linear variety 

(manifold) {u| >.  = D.u} defined by the measurements.    Since the set U is 

an ellipsoid in the space R       *     "   the set intersection U.   is also an ellip- 

soid and the set X...  is also an ellipsoid since by equation (4.14) it is 

obtained through a linear transformation on an ellipsoid.    We proceed to 

characterise the center and weighting matrix of the ellipsoid X.i.  in the 

following proposition. 

Proposition 4.1:   Thj ellipsoid X.|k which selves Problem 4.1 is given for 

all i, k,   0 < i < N,  0 < k < N by 

Xi|k   =   tx| (x-^^^Xx-^.^)  <   1 - 62(k)} (4.15) 

where the matrix 2.jk is given by 

Z.|k   -    L.fM - MDj^MDj^^MlLj (4.16) 

A .        , . the n-vector x.i.   is given by 
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*i|k   =   LiMDk<DkMDk>"1Ck <4-17) 

and the nonnegative scalar 6 (k) is given by 

62(k)   =    C^MD^)'1 Ck (4.18) 

In the case where the matrix L. i.  is only positive semidefinite but not positive 

definite the ellipsoid X.i.   is characterized by its support function 

<r(x*|xi(k)   =   <x*.^i|k> + [l-62(k)]1/2(x*!2i|kx*)1/2 (4.19) 

It should be mentioned that,  as will be shown later, the matrix S...   is invert- ilk 

ible provided the matrices A. in the system equation (4.1) are invertible. 

Proof; Since the equation (4,19) implies the equation (4.15) whenever the 

matrix ^.i.  is invertible,  it will be sufficient to prove 

<r(x*|Xi|k) =   sup<x*x> = ^*4|k>+ I 1 -62(k)l1/2(xV|kxV/2 

xe^|k 

We will first characterise the support function of the ellipsoid U.  of equation 

(4.14) 

Uk   =    {u|Ck= Dku, u'M^ufl} (4.14) 

Conuider the space R       '     »*' with the norm 

iiuii = (u'M-v72 

With this norm the set U =   (ulu'M^u < 1} becomes the unit ball in Rn+N(r+P) 
A 

and the set U.  of equation (4.14) is the intersection of the unit ball with the 

linear variety {u| *.  = Diu}.    Let u,  be the (unique) vector of minimum 

norm on this linear variety given by the projection theorem*   u ' 

\   =   MD^D^D^)"1 Ck (4.20) 
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It can be seen from equation (4. 9) that the matrix D. has full rank and 

therefore the matrix (D. MD! ) is invertible thus justifying the notation 

used above. 
A 

The set U.   is now given by: 

0k =  {u| ||u-Äk||
2 <  i-i|5ki|2.      Ck=Dku} 

and can be also characterized as 

uk = ök + (i-l|Äkll2)1/2TJk 

where U.  is the intersection of the unit ball with the nullspace N(D. ) of the 

matrix D, .   From the above equation we have for the support function of U. 

<r(u*|fik)   =   <u*, Äk> + (1-||A||2)1/2   sup, <u*,u> (4.21) 
k k K ||u|p< 1 

ueNfbk) 

By using Theorem 5.&.1 in (Lul) we have 

sup <u ,u>   =    ||u  || 
l|u|[2<l 
u«N(Bk) 

A* ♦ where u    is the projection of the vector u   on the subspace N(D. ).    Using 

again the projection theorem we obtain 

||Ö*||   =    {u^lM-MD^MD^^D^Iu*}172 

Using this relation in (4.21) we have 

<7(u*iÖk)   =   <u*f Äk> + (l-||Äkl|2)1/2{u*,(M-MDic(DkMDJc)-
1DkMlu*}1/2 

A 
Using the fact that X...   = L U,   in the above equation, we have 
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<T(x*|X.|k) = «r(L!^|uk) 

=   <x*.L.Ök> + (l-||^l|2)1/2{?c*,LilM-MDjc(DkMDJc)-
1DkMlLlx*}1/2 

Now from equations (4.16), (4.17), (4 .18) and (4. 20) we obtain 

<r(x*|Xi|k)   =   <x*,^i|k> + [1.62(k)]1/2(x*'Zi|kx*)1/2 

which was to be proved. Q. E. D. 

The equations (4.17) and (4.16) for the center x...  and the weighting 

matrix £. •.  of the ellipsoid X.i.  appear to quite formidable in view of the 

complicated expressions (4.8) and (4.9) for the matrices L. and D, .    Y ' we 

will be able to obtain efficient recursive algorithms for the computation of 

x.i. and 2.1.  by associating the Problem 4.1 with the following linear mini- 

mum variance estimation problem. 

Problem 4.1';   Consider the Problem 4. 1 where the vectors x , w , w,, . ., wN ., 

vl'v2' ' '' VN ^nstea^ 0^ satisfying the energy constraint (4.3),  are independent 

random vectors with zero mean and covariances 

E^xo'x^   =^'    E{wi-lwl-l}  =  Qi-1'    E^vivi}   =  Ri'    i= 1'Z N 

Find the linear minimum variance estimate x. i.  of the system state x. at time 

i given the measurements z., z-, . .., z.   and also find the covariance of the 

estimation error 

r...    =   E{(x.-x.l.)(x.-$.,.)•} 
i|k '  i      i|k"  i      i|k' 

By using the relations (4.6) and (4.7) it can be seen that the above 

problem is equivalent to finding the linear minimum variance estimate 
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A 
x. i,  of the vector x. i|k i 

x.   =   L.u (4.6) 

given the measurement 

where u is a zero mean random vector with covariance M given by equation 

(4.11).    The solution of this problem is well known and given in many sources 

U      * .     The estimate x...  is given by equation (4.17),  i.e., by the 

same expression as the center of the ellipsoid X...   in Proposition 4. 1.   The 

covariance matrix 21 ■.   is given by equation (4. 16),  the same expression which 

gives the weighting matrix of the ellipsoid X..,   in Proposition 4.1.    Thus 

there is a one-one correspondence between Problem 4.1 and the stochastic 

estimation Problem 4. I1 which is reflected in identical expressions for the 

center x. i.  and weighting matrix S.,.  of the ellipsoid X.,,  on one hand,  and 

the linear minimum variance estimate x...  and error covariance S..,   in 
i|k i|k 

Problem 4.1' on the other.   Now from the well known results in stochastic 

estimation theory the estimate x...  and error covariance "S.,   are computed 

by efficient recursive algorithms (Kaiman estimators) which do not require 

storage of the measurements.   The same algorithms are applicable and can 

be used for obtaining the center x...  and weighting matrix Z..,  of the ellipsoid 

X. i, -solution of Problem 4.1. i|k 
2 

Concerning the scalar 5  (k) of equation (4.18) the following recursive 

relation can be proved for all k 

62(k)   =   «VlJ^-C^.^,^ 

(4.22) 

M^^MMMMIM 



This relation can be used to calculate the scalar 6  (k) recursively without 

requiring storage of all the measurements up to time k.    The equation (4.22), 

the continuous counterpart of which has been proved in.(B2)( can be proved 

in a number of ways.   One possible method is by direct manipulation from 

the equation (4. 18) using the equations (4.8), (4.9) and (4. 11).    This method 

is  straightforward but too lengthy and tedious to be profitably displayed 

here.   Another method to prove the equation (4.22) is by considering the 

filtering case of Problem 4.1 and by casting it as an optimal tracking prob- 

lern as was done in(B2). The equation (4.22) follows directly from the solu- 

tion of this tracking problem. 

The preceding discussions have demonstrated that the ellipsoid X. i.- 

solution of Problem 4.1 can be characterized from Proposition 4.1 by using 

results of stochastic estimation theory (Kaiman estimators) for the recursive 

computation of the center x. i.  and the weighting matrix £. i.   and by using 

2 equation (4.22) for the computation of the scalar 5  (k).    In the next section 

we shall explicitly characterize the solution of the Problem 4.1 for the case 

of the filtering problem. 

We finally note that the correspondence between the Problems 4.1 

and 4.11 can be extended to some related problems not explicitly considered 

here.   Such is the problem where there is no error in the measurement 

equation (4.2),  i.e., z,  = C.x. .   In this case the energy constraint (4.3) 

becomes 

N 
x'^x   +  S w!   «Q^.w.   .   <   1 

O O       .    ,      1-1     1-1     1-1    — 
1=1 

The Proposition 4.1 can be easily shown to hold with the matrices L., D. , M 
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appropriately modified. Under these circumstances however the matrix 

D. need not have full rank and consequently the matrix (D. MD!) may not 

be invertible.   In this case it can be proved similarly as in Proposition 4.1 

that the center x.i.  of the ellipsoid X.i. , the weighting matrix 2.1.  and the 
2 

scalar 6  (k) in equation (4.19) are given by 

where the matrix S.  is any solution of the equation 

SAMD'k   -   MD' 

and 

'ilk = h**15^ 

62(k)   =   y^MD^ 

where the vector y,  is any solution of the equation 

DkMDkyk = ^ 

The correspondence with a stochastic estimation problem similar to Problem 

4. 1* which involves no measurement noise can still be established and the 

(Tl)  (,T2) results for this problem        *, v -   can be used for the solution of the esti- 

mation problem with an energy constraint but no measurement noise. 

4. Filtering for the Case of Energy Constraints 

In this section we will utilize the general solution of Problem 4.1 

as given by Proposition 4.1 and the one-one correspondence with the sto- 

chastic estimation Problem 4.1' that was demonstrated in the previous 

section to write down explicitly and in recursive form the solution   for the 

MMHMMWMMiaaMiMaHMHMMaMMl 
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filtering case.    Entirely similar equations can be written for the prediction 

and smoothing cases!6  '' *Fr1'' (Ral)   Although it is possible to write the 
/An 

solution for the general case1     ' for simplicity we will assume in this and 

subsequent sections that the matrices A,   in the system (4.1) are invertible 

for all k.   This assumption will guarantee the existence of all the inverses 

that will appear in the expressions that follow. 

Propoaition 4.2;   The solution of Problem 4.1 in the filtering case is the 

ellipsoid X. i.   given for all k,  0 < k < N,  by the equation 

Xk|k   =   {x|(x-ik)'Z-}k(x-xk)   <   l-62(k)} (4.23) 

where the positive definite symmetric matrix 2. i.  is given recursively by 

the Riccati equation 

^ili   =   ^ll-l^l^1^"1 <4-24) 

Zi|i-1   =   Ai.lLi.l|i.lAl.l+Bi-lQi-lBl.l ^25) 

Zo|o   =^ <4-26) 

the vector x.   is the solution of the equation 

*i+i = ^ + zi+i\mcUiKli^rci+iAi^ <4-27) 
xo   =    0 (4.28) 

2 
and the nonnegative scalar 6  (k) is given by the equation 

62(k)   =   S  (z.-C.A.   .x.  ,)'(€.Z.i.   .C!+R.r1(z.-C.A.   .x.   .)      (4.29) x   ' ._j     l        1   l-l.:i-l' *   1   l|l-l    l        1*1        i   i-l   i-l'       * 7' 
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Proof:   The proof follows directly from Proposition 4.1 for i = k, by uti- 

lizing the correspondence with the stochastic estimation Problem 4.11 

demonstrated in the previous section,  and by using also equation (4.22). 

5. Formulation of the Problem with Instantaneous Constraints 

While the preceding sections show it to be of theoretical interest, 

the model for the uncertainty described by the energy constraint (4.3) is 

of limited use as far as practical applications are concerned.   A situation 

which appears more often in practice is that in which the uncertain quan- 

tities are individually constrained at each point in time.   In this section 

we formulate such a problem which is then solved in Sections 6 and 7 using 

the results of the preceding sections.    In particular, we bound the instant- 

aneous constraints by a single combined energy constraint and apply the 

results of Section 4.   We concentrate our attention to the filtering case. 

Similar estimators can be derived for the prediction and smoothing prob- 

lems by using the same approach.    The resulting estimator is shown to be 

(SI) simpler but otherwise comparable to the one proposed by Schweppe1 

with the additional advantage that it possesses a steady-state structure. 

Problem 4.2; Consider Problem 4.1 in which the single energy constraint 

(4.3) on the uncertain quantities is replaced by the three individual instant- 

aneous constraints 

x'^x     <   1 (4.30a) o o  — 

wjcQ'1wk   <   1. k=0,l....N-l (4.30b) 

vkRklvk  ~   1' k= 1'2"'N (4.30c) 
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where^, Q, ,  R,  are positive definite symmetric matrices.    As in Prob- 

lem 4.1, find the set X.i.  of system states at time i that are consistent 

with both the measurements z», z~, .... z.  up to time k and the constraints 

(4.30). 

6. The Filtering Problem with Instantaneous Constraints 

Contrary to the case of energy constraints, it is very difficult to 

obtain the exact solution of Problem 4.2.   As mentioned earlier the energy 

constraint (4. 3) defines an ellipsoid in the space R       '    ^ .    Since the 

measurements s., z^i • ■ > zi. define a linear variety in this space and since 

the intersection of an ellipsoid with a linear variety is also an ellipsoid,  the 

set of possible system states X.i. , obtained by a linear transformation on 

this ellipsoid intersection, is also an ellipsoid,  as found in Sections 3 and 4. 

The individual instantaneous constraints (4.30) do not,  on the other hand, 

define an ellipsoid, and thus the intersection of the linear variety defined 

by the observed measurements with the subset of R       *    P' satisfying (4. 30) 

is not in general an ellipsoid.    Consequently, the set of system states at 

time i consistent with the measurements z., z.» • • • zi. ^8 not in general an 

ellipsoid:   it is a convex set that,  in contrast to the ellipsoidal case, cannot 

in general be characterized by a finite set of numbers. 

Thus one is forced to seek approximate solutions to Problem 4.2. 

(SI) The approach taken by Schweppe1       is to compute a bounding ellipsoid to 

the set X.i, .    Since an ellipsoid in R    is completely characterized by an 

n-vector (its center), and an nxn weighting matrix, the storage problem is 

reduced to more manageable proportions.   Schweppe considered the filtering 

and prediction problems for a discrete-time system in (SI),  and gave a 
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recursive algorithm for the center and weighting matrix of a bounding 

ellipsoid to the set of possible states.    The approach used was to bound 

recursively the set of possible states at each time instant by an ellipsoid. 

This algorithm was later extended to a continuous-time system using a 

(S2) discrete-to-continuous limiting argument.       '   The following lemma gives 

the filtering algorithm that is presented by Schweppe in (SI). 

Lemma 4.1;   A bounding ellipsoid to the set of system states X. r.   of Prob- 

lem 4.2,  is given for all k,  0 < k< N, by: 

X*|k   =   {x|(x.Jk).^|k(*-*k)H) 

where the positive definite matrix 2SK  is given recursively by the equations 

^li   -   d-^Md-P^.^PiC-H-'c,]-1 (4.32) 
i 

Vl   =   ^-Pi-l^S-l^i-lli-lAl-l^M^-lQi-l^-l <4-33) 

Z ,     =^ (4.34) o|o 

the vector x.   is the solution of the equation 

*i+l    =   AÄ^i+l^^i+l^^i+lli+^l+l^+l^i+l^i+l^ 

(4.35) 

with the initial condition 

x     =    0 (4.36) o 

2 
and the nonegative scalar 6.   is given for all i by 

d2   =    (z.-C.A.   .0.   J'Kl-p.^C.Si.   .C! +p:1R.] "Nz.-CA.     $     ) 

(4.37) 
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where the scalars ß.   ., p.,  are free parameters with 0 < ß.   , < I, 

0< p. < 1,  i = 1,2,....N. 

The estimator of the above lemma has the same basic structure as 

the stochastic Kaiman filter.    It should be noted,  however, that the gain 

2-1 -1 matrix    p.., (I-*.,,)    2}. .. i.. .C!. .R...    depends on the measurements ri+l i+l i+l Ii+l   i+l   i+l r 

received at a particular run and must be calculated from the equations 

(4.32) through (4.34) on-line.    Furthermore, even for a time-invariant 

system,  this estimator does not possess a steady state structure due to 

the fact that the solution of equations (4. 32) through (4. 34) does not converge 

to a steady state as time increanes. 

These disadvantages are avoided in the estimator we now derive. 

The approach is again to bound the set of possible states consistent with 

the observations by an ellipsoid.    In contrast to (SI),  we do this indirectly 

by bounding the instantaneous constraints (4.30) with an energy constraint of 

the form (4.3) and then using the results of Section 4 to produce an ellipsoidal 

bound on X. i. .    We will restrict our attention to the filtering problem.    En- 

tirely similar arguments can be used to derive estimators for the prediction 

and smoothing problems. 

An energy bound for the instantaneous constraints (4. 30) is given in 

the following lemma: 

Lemma 4.2:   The set ILCR"^^ where 

  k 

uk = ^.w0....>Vl.v-->*ki*;*1*0< *. -i-A-Wi ^1' 

v'R'S 1 ^  i= 1.2.--.k} 



•84- 

is contained in the set 

uk= {vwo'-"Vi'vi""vk|aix;rlxo+ ^/^.i-^i-A-Vi-i 

+ a,   .v'RrV  <   1} (4.39) 

where a.,  a,: •   «i a3   .,  i= l,Z, . . ,k,  are any nonnegative real numbers 

with 

k 

i=l 
al+i

Z/a2,i-l + a3.i)   =    1 (4.40) 

Proof:   Multiply (4. 30a, b, c) by a.,  a,   ,,, a,   .,   respectively,   sum the 

last two from i = 1 to i = k and use (4.40).Q. £. D. 

Having bounded the instantaneous constraints (4.38) by the energy 

constraint (4. 39), we are now in a position to apply the results of Proposi- 

tion 4.2 to give a bounding ellipsoid to the set X. i. .    The equations that 

result by application of Proposition 4.2 become simpler if we write a., a.   .   ., 

and a^   . in the following form: 

aj    =    (l-P0)(l-P1)(l-P1)(l-P2)--.(1-Pk-l)(1-pk) 

a2.o = P0(i-PiHl-M1-^---<1A.i><1-'Jk) 
a3. 1    =   P1(l-P1)(l-P2).--(1-Pk.1)(l-Pk) (4.41) 

wi 

*2.k-l   =   K-l^-Ok) 

a3.k   =   "k 

»ere ß     .,  p.,   i= l,2,..,k are any real numbers with 0 < (J.   , < 1,   0<p. <1 
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It is easy to see that for the parameters a,,  a2   .   ., a,   . as defined 
k 

by equations (4.41) we have a, + £  (a,   .   , +a.   .) =   1. 
*      i= 1    'i i~i       J» i 

By combining now Lemma 4.2 under the identifications (4.41) with 

Proposition 4.2 we have after straightforward manipulation the following 

solution to Problem 4.2 for the filtering case. 

Proposition 4. 3; A bounding ellipsoid to the set of system states X. i.   of 

Problem 4.2 is given for all k,  0 < k < N,  by the equation 

X*(k   =   {x|(x-$k)'Z-|k(x-$k) <   1 -62(k)} (4.42) 

where the positive definite symmetric matrix Z. i.   is given recursively by 

the equations 

zi|i = i^-^i-i^i0!^1^"1 (4-43) 

si|i-i = ^^i^^i-ili-iH-i^lWi^iH-i    <4-44) 

^olo   -* <4-45) 

the vector x.   is the solution of the equation 

$i+i = AA + 'i+i
zi+i|i+icl+i^+V^+i -Ci+i^i) <4-46) 

with the initial condition 

x     =    0 (4.47) o 

2 
and the nonnegative scalar 6   (k) is the solution of the equation 

62(i) =   (l-p.^Hl-p.^Vi) 

+ (z.-C.A.   .x.   J'Kl-pJ^C.Z.i.   .C! +p:1R.]'1(z4-C-As ,x. ,) '  i     i   i-l   i-l' "    ri i   ili-l    i     ri     i'     x i     i  i-l i-l' 

(4.48) 
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with the initial condition 

62(0)   =    0 (4.49) 

and P-   i > P-i  i = 1» 2,.. ,N,  are any real numbers with 0 < ß.   i < 1> 

0 < p. < 1. 

It can be seen that the estimator of the above proposition has a similar 

structure with the stochastic   Kaiman filter as well as with the estimator 

of Lemma 4.1.   However,  it has the important advantage over the latter that 

the gain matrix ^Pi + i^i+i I i+i^-|+i^i+i)  ^8 p'ecomputable once the parameters 

ß.   . ,p. are selected.    Furthermore, as will be discussed in the next section, 

for a time-invariant system the estimator of Proposition 4.3 can be imple- 

mented as a time-invariant system if the final time N approaches infinity. 

In practical applications this last advantage can be of extreme importance. 

A vital question concerns the comparison of the quality of approxi- 

mation to the set of possible states provided by the two estimators.   It turns 

out that the approximation is comparable in the following sense.    Let 

(ß* • Pi. • • .Pfj   I>PM) ^e a 8et 0^ parameters used in the estimator of Lemma 

4. 1 and {ß  , p....., ßN   •, Pxr) be a set of parameters used in the estimator of 

Proposition 4.3.   Then if we select   for i = 1, 2, . ., N 

Pi-1 ß!        =   -^—5 i-i  (4.50) 
1-1      (i-^i-DKi-ßi.^+ßi.! 

pi   = j ^  (4.51) 
1 {[l-6'S(i-l)l(l-ßi.1)+ß._1}(l-p.)+pi 

This fact was brought to the author's attention by F.  Schlaepfer. 
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2 
where 6  (i-1) i« the measurement dependent term of equation (4.48) in 

Proposition 4.3,  the estimate ellipsoids X. i.  provided by the two esti- 

mators are identical for all k and for all sets of received measurements 

for which equations (4. 50) and (4. 51) hold. 

Another important question concerns the quality of the approxi- 

mation of the bounding ellipsoid X. i.  produced by the estimator of Propo- 

sition 4.3 to the exact set of possible states X. i. .   This is a question 

largely unresolved to this date.   It appears to be very difficult to obtain 

estimates of the approximation involved which will be applicable to a large 

class of problems.   For any given problem however to is possible to esti- 

mate exactly the approximation in any direction as it will be discussed in 

Section 8.   A related problem which will also be discussed in Section 8 is the 

question of the optimal selection of the parameters ß.   , and p.. 

7. Constant Systems and Infinite Time Intervals 

In this section we consider the special case of Problem 4.2 where 

the system and the disturbance ellipsoid sets are constant,  i.e., A.  = A, 

B. = B,  C,  = C,  Q.  = Q, R.  = R for all k.    If we select the parameters ß. , 

p.  to be also constant (i.e., ß,  = ß, Pk = P for all k), the equations (4.43), 

(4.44) for the matrix £1,   in Proposition 4.3 become 

^Ik   -   «I-P^+pC-R-'cr1 (4.52) 

^Ik-l   =   (l-Pr'A^.jl^A'-KTW (4.53) 

with initial condition £ 1   =¥.   These equations can be put into the usual 

discrete-time Riccati equation form 
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Sk|k   =   <Zk|k.l+C,R*rlc^1 (4-54) 

Lk|k-1  = AVl| k-l^' + ^^ ^55) 

by defining the matrices A , Q , R .as 

A*   =   (l-p)"1/2(l-pr1/2A, Q*=p-1(l-pr1Q.    R*=p-1R (4.56) 

(Tl) 
It it well known*     ' that the solution S. .,  of equations (4. 54),  (4. 55) con- 

verges to a positive definite symmetric matrix £     as k -* oo if the pair 

(A , C) is completely observable and the pair (A , B) is completely control- 

lable.   The pair (A , B) is completely controllable if and only if the pair 

(A. B) is completely controllable i.e., the constant system (4.1) is com- 

pletely controllable.    This can be seen by the fact that the matrix A* is a 

scalar multiple of the matrix A and therefore the subspace spanned by the 

column vectors of the matrix A    B is the same as the subspace spanned by 

the column vectors of the matrix A mB for all m = 0,1, .. ., n-1.    Similarly, 

the pair (A , C) is completely observable if and only if the pair (A, C) is com- 

pletely observable.    Thus, for a completely controllable and observable 

time-invariant system, the gain {Z. .. C'R*"1} in the estimator of Proposi- 

tion 4.3 after an initial transient will converge to a steady state constant 
*-1 

gain {2    C'R       }.    For practical reasons,  one would like to implement the 

estimator as a time-invariant system using; the steady-state gain for the 

whole time interval,  i.e.,  starting at the initial time k = 0.    This is possible 

since, as we will prove below, the approximation that results by neglecting 

the initial transient vanishes as time goes to infinity. 

Using the identifications (4. 56), the estimator of Proposition 4. 3 for 

a time-invariant system gives the estimate ellipsoid 
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where 

with 

xk|k = W^-\),2i|k<x-^5i-62(k)} 

^klk = ^M + c,R*"lc >"1 

^klk-i = AVl|k-lA*,+ BQ*B, 

62(k) =  (i-P^jHl-p^V-D 

+ K"C^k-l)K|k-lC,+R*)"1(zk-CA^k.1) 

Zo|o   =*   '     5o   =   0' 6(0)   =   0 

(4. 57) 

(4. 58) 

(4.59) 

(4.60) 

(4.61) 

(4.62) 

If S  .   -»2     and S. k  i  -"S- as k -► oo and we implement the estimator as 

a time-invariant system using the steady-state gain (ZLC'R       } the resulting 

estimate ellipsoid will be given by 

Yk|k   =   CxKx-^S^x-^C  1.62(k)} (4.63) 

where 

^k+1    =   AK + ^C'R*"1 (»k+l " CA^ (4.64) 

62(k)   =   (l-P)(l-P)62(k-l) + (zk-CA?k.1)(CsooC'+R*)-1(zk-CA^_1) 

with 

y2(0) = o 

(4.65) 

(4.66) 

Using the fact that S^ - 2^ and ^^.j  - ^ as k -. oo,  it will now be 

proved that $k - \ and y2(k) -* 62(k) as k ^ CD.  i.e..  that the estimate 
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* 
ellipsoid Y. j.  of equation (4.63) "converges" to the set X. ..  of equation 

(4. 57) as k — oo.    To this end let E ,,   = S      + H.   where H.   —■ 0 as k — oo. 

Then from equations (4.60) and (4.64) we have 

*k+l-*k+.  -  (A-ra>C.I.»-1CA)(Jk-?k)+HkC-R*-1(zk+1-CA$k)(4.67) 

*-l Now note that the matrix (A - Z    C'R      CA) is stable (has eigenvalues within oo " 

the unit disk),  since by equation (4. 56) 

A - ZooC'R*"1CA   =    (l-ß)1/2(l-p)1/2(A*-2:ooC,R*"1CA*) 

«if      1 A 

and the matrix (A*- 2    C'R "  CA ) is stable by a well-known property of the 

A— l y^ 
Riccati equation.    Furthermore, the driving term H. C'R      (ZJ-J.] - CAx. ) 

goes to zero as k -* oo since H,   ~* 0 as k -* oo and (zk+i - CAx, ) is bounded. 

Therefore,  the solution of equation (4.67) goes asymptotically to zero as 

k "* GO and hence y.   -* x.   as k -► oo. 

Also from equations (4.61) and (4.65) 

62(k+l)-'6Z(k+l)   =   (l.p)(l-p)[62(k)-'62(k)]   +ek+1 (4.68) 

where 

ek+i = 'Ik+l-
CASk»,^c2k+l|kc,+R*>'1(^+i-

CA$k' 

- <'k+i" CAV^V + ^»"'('k+i - CA^k' 

Since y,   -* x.   and Z.    . .,   -* 2     as k -» oo we have  e,    .  -► 0 as k -► oo and 

since 0 < (l-ß)(l-p) < 1 the solution of the equation (4.68) goes to zero as 

^2 2 
k  -► oo.    Hence 6   (k)   -* 6  (k) as k — oo. 

Thus,  in applications where the system is constant and the final time 

approaches infinity,   one can use the steady-state time-invariant estimator 

and be assured that the error that results from neglecting the initial trans- 

ient of the solution of the Riccati equation vanishes as time increases. 

 1 ———~~—mmmmm-mmm*m—mamtmaim*m—m 
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8. Discussion and Sources 

Two state estimation problems which involve a linear system and a 

set-membership description of the uncertainty were examined in this 

chapter.    For the case of an energy constraint on the uncertain quantities the 

set of possible states consistent with the measurements was shown to be an 

ellipsoid which was characterized by recursive estimators similar to 

Kaiman estimators used in stochastic estimation problems.    The results 

for the energy constraint case were then used to obtain bounding ellipsoid 

estimators for the,  more often appearing in practice,   c .r    of instantaneous 

ellipsoidal constraints on the uncertain quantifies.    Th< se estimators have 

the same basic structure as the Kaiman estimator anr1 iff- r distinct ad- 

(Sl) (SZ) vantages over existing schemesv     ''v     '. 

The basic practical advantage of the estimators proposed in this 

chapter is that they provide intelligent designs with a minimal amount of 

information.   Instead of requiring precise statistics of the uncertain quan- 

tities only bounds on the magnitude or energy of the uncertain quantities 

are necessary.   Since the estimators have the same basic structure as 

Kaiman estimators the approach used here in effect suggests an intelligent 

way of selecting the gain matrices of the estimator with a minimal amount 

of information. 

One of the questions yet largely unresolved concerns the quality of 

the approximation involved in the algorithms for the instantaneous constraint 

case.    Related to this question is the problem of optimal selection of the 

free parameters ß. and p. that appear in the algorithms.    There are two 

difficulties related to this problem.    First a criterion for optimization must 
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be chosen.    Second an optimization algorithm must be devised based on 

this criterion.    Even choosing a good criterion is a difficult question. 

For instance a method which appears at first sight to be xeasonable is to 

find the parameters ß.,p. for which the trace of the weighting matrix S^i N 

at the final time is minimized.   An algorithm for selection of the parameters 

so as to optimize this criterion was derived by the author yet for some 

simple examples the resulting selection of the parameters led to an indeed 

poor design.    Presently there exists no optimization algorithm for selecting 

the parameters p.,p.,  and some trial and error must be used for their selec- 

tion.    For the case of a time-invariant system and an infinite time interval 

this is not very troublesome since in this case only two parameters ß,p 

must be selected with 0<P<1,  0<p<l. 

Given now any bounding ellipsoid estimator of the form appearing in 

Proposition 4. 3,  and any set of measurements z., z^. . ., z.  a comparison 

of the bounding ellipsoid X. i.  with the exact set of possible states X. i.  can 

be made in any direction x   by comparing the value of the support function 

/ *lv*    \      ^   * ^ ^ J. r i    jt2/i^i i/2/ *,T        *\1/2 
<r(x  |Xk|k) =  <x ,xk> + tl-6   (k)]        (x    \|kx ) 

with the value of the support function (r(x  | X. i. ).    This latter value can be 

calculated from 

sk sk 
cr(x   |Xk|k)   =   sup<x ,xk> 

Xk€Xkfoc 

subject to the constraints 

xi+l   '   Aixi + Biwi » i=0, l,..,k-l 

z.   =   C.x. + v.   , i = l,Z, . . ,k i ill ifi 
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x'^x     <   1 o o  — 

wlQ^w.   <   1 , i = 0,1 k-1 

v^R^v.   <   1, i= 1.2,..^ 

a linear program with linear and quadratic constraints.    A comparison of 

these values for a number of directions of interest and for a variety of sets 

of measurements can be informative concerning the quality of the approxi- 

mation of the estimates provided by the given bounding ellipsoid algorithm. 

We mention that the question of parameter selection and of the quality of 

approximation have been discussed by Schlapfer. Some simulations 

can also be found in the same reference. 

Similar results to those obtained in this chapter can be derived for a 

variety of problems not explicitly considered here.    One such problem was 

briefly discusned in Section 3 and concerns the case where there is no mea- 

surement noise in equation (4.2) and the energy constraint is of the form 

-1 N"1 -1 
x'^    x    +2    w'Q.   w.   <   1 o o      i=0     i    i      i  - 

The estimator for this problem is very similar to the corresponding sto- 

(Tl) chastic estimator*     '  and can be used to obtain a bounding ellipsoid algo- 

rithm for the related instantaneous constraint case where there is no mea- 

surement noise by using a similar bounding operation to the one in Section 

6.   Another problem that can be treated similarly is the static estimation 

(S2) 
problem        ' which does not involve a dynamic system. 

The continuous time counterparts of the estimators of this chapter 

have already appeared in (B2).    The approach used in this reference was 
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to associate the estimation problem for the energy constraint case with 

the standard tracking problem df optimal control theory in which time is 

reversed.    This approach can also be used for most of the problems con- 

sidered here,   and has the advantage that it demonstrates in a direct way 

the duality oetween linear estimation problems and linear quadratic optimal 

control problems.    However the approach used here is more efficient in 

that it is applicable to more general cases.   In particular it is applicable 

to those problems for which the estimate ellipsoid is degenerate (has a 

weighting matrix which is positive semidefinite but not positive definite). 

Furthermore it proves explicitly the one-one correspondence between 

estimation problems with an energy constraint description of the uncer- 

tainty and linear minimum variance stochastic estimation problem.    The 

reader familiar with.the Hilbert space formulation of stochastic estimation 

problems^ will have no difficulty observing from the proof of Proposi- 

tion 4.1 that the solutions of Problem 4. 1 and Problem 4.1* involve dual 

applications of the projection theorem which result in identical equations. 

Estimation problems involving a set-membership description of the 

uncertainty were first considered by Witsenhausen* in the framework 

of minimax control problems with imperfect state information.    The set 

description approach towards the estimation problem gained attention fol- 

(Sl) (SZ) lowing the work of Schweppev     '' *        who demonstrated that by using ellip- 

soidal approximations, algorithms with potential for practical applications 

could be devised.    The results of this chapter were in fact largely motivated 

by Schweppe's work.    Extensions of Schweppe's algorithms to distributed 

parameter systems were obtained by Schlaepfer. Such extensions should 

be possible for the results of this chapter as well.    An estimation problem 
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which does not involve ellipsoids is the one which involves a linear discrete 

time system and instantaneous polyhedral constraints for the uncertain 

quantities.    Such constraints are interesting because the resulting set of 

possible states consistent with the measurements can be characterized 

precisely by a finite set of bounding hyperplanes.    However the number of 

these bounding hyperplanes increases with time thus possibly creating a 

serious storage as well as computational problem.    A method for obtaining 

polyhedral approximations to the set of possible states using only a fixed 

fHl) number of bounding hyperplanes is discussed by Hnyilidza. 

Finally it should be noted that the results presented in this chapter 

rely heavily on the linearity of the system,  and it appears to be quite dif- 

ficult to obtain extensions to nonlinear estimation problems.    However such 

problems have not been sufficiently explored up to now and are worthy of 

attention. 



CHAPTER 

MINIMAX CONTROL PROBLEMS WITH 
IMPERFECT STATE INFORMATION 

I. General Remarks 

We now turn our attention to minimax control problems with im- 

perfect state information.    We will consider the general Problem 1. 1 

which was introduced in Chapter 1.    The special case of this problem where 

the system is linear,   the cost functional has some convexity properties,   and 

the controller has available an exact measurement of the system state has 

been examined in Chapter 2,    The additional structure of this special case 

allowed us to obtain results that are considerably stronger than those that 

can be deduced for the general Problem 1.1.    For this latter problem if is 

very difficult to obtain results concerning existence of solutions or neces- 

sary conditions for optimality.    Furthermore the solution of the problem by 

dynamic programming,  which will be presented in Section 3,  becomes ex- 

tremely complicated in general.    This is due mainly to the fact that,  as will 

be demonstrated,  the optimal controller performs the dual function of state 

identification and system actuation.    The complexities of this situation are 

(Fl)  (Al) well known from stochastic optimal control problems. v We will be 

able to obtain insight into the dual function of the optimal controller through 

the   notion  of a sufficiently informative function which parallels the familiar 

notion of a sufficient statistic of stochastic optimal control.    The notion 

of a sufficiently informative function will be introduced in Section 4,  and it 

will be used for demonstrating the separation of the optimal controller into 

an estimator and an actuator.      The special case of a linear system where 

-96- 
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the uncertain quantities satisfy an energy constraint will be further inves- 

tigated in Section _      For this case it will be shown that the estimator part 

of the optimal controller can be easily and efficiently characterized.    Still 

for this case the actuator part of the optimal controller cannot in general 

be easily characterized although we shall demonstrate the characterization 

of this actuator for the special case of a reachability problem in the next 

chapter. 

In the next section we restate and briefly discuss the Problem 1. 1 

which is the object of study of this chapter. 

2. Problem Formulation 

We shall consider the following problem: 

Problem 5.1;   Given is the discrete-time dynamic system 

Xk+1   =   V'W^k*' k = 0, 1, .. .,N-1 (5.1) 

where x.c R   ,   k = 0, 1, . . ., N is the state vector,  u. e R    ,   k= 0, 1,...,N-1, 

is the control vector,   w. e R   ,  k = 0, 1 N- 1,   is the input disturbance 

vector,  and f.  :RxR     xR    "•R    are known functions. 

Available to the controller are measurements ol the form 

zk  =   hk(xk, Vk) . k=  0. 1 N-l (5.2) 

where z, c R  ,   k =  1, 2, . . ., N-l,  is the measurement vector,   v, e R   ,   k = 

1, 2, .. ., N-l,   is the measurement noise vector,   and b. : R    x R" -* R 

are known functions. 

-yu .        i j • rin+Nr+(N-I)p The uncertain quantities lumpen in a vector qe R 'r 

q   =    (xo'Wy'wi wN.i'v'j. V2. • • •• VJM.!)' (5.3) 
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i u   i v      .. ^      r ti
n+Nr + (N-1)P are known to belong to a given subset Q of R r 

qeQ (5.4) 

Attention is restricted to control laws of the form 

HLk : Rk(8+m) -  Rm. k=0, 1....N-1 (5.5) 

taking values 

Uk   =    ^k^l* Z2, * " ,Zk,Uo,Ur ' " ,Uk-l^    k10»1»--»1^-1 

(5.6) 

where u    is interpreted as a constant vector, o r 

It is required to find (if it exists) the control law in this class for 

which the cost functional 

JCK.MJ! • ••^N-1) =   8up Flxl•x2• ••,xN'to,Fil^zrUo^ * •,t*N-l^zl,",,uN-l^ 
qf Q " ^    "   "'    "" 

(5.7) 

is minimized subject to the system equation constraints (5. 1),  and where 

F:R —   (-co,   +ao)  is a given function. 

As in Problem 2. 1,  the use of the (semiclosed) extended real line as 

the range of the function F permits the incorporation of state and control 

constraints in the cost functional by adding to the function F the indicator 

functions of the state and control constraint sets. 

In the next section we will present a dynamic programming algorithm 

for solution of the Problem 5. 1.    Using this algorithm we will then be able 

to reach some conclusions concerning the structure of the optimal control 

law. 
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3. Solution by Dynamic Programming 

Consider the optimal value of the cost function (5.7) 

J=    inf sup Ffrj.Xg, . .,xN, u .Uj, . .,uN   .) (5.8) 
Hk qeQ 

k =  0, 1, . .,N-1 

The purpose of the dynamic programming algorithm is to convert the mini- 

mization problem indicated in the above equation to a sequence of simpler 

minimization problems by taking advantage of the sequential evolution of the 

system state,   and the information available to the controller according to 

equations (5.1) and (5.2).    However matters are somewhat complicated in 

the above problem by the presence of uncertainty since in the process of 

generating the state and measurement vectors the disturbances are inter- 

mediately selected by,  say. Nature with the objective to maximize the value 

of the cost.    For this reason the development of the dynamic programming 

algorithm will require a somewhat elaborate construction.    We give first 

the following preliminary definitions. 

Let P(R8) be the power set (set of all subsets) of R    and consider 

the following function 

Z1:Rm-P(Rp) 

which assigns to the vector u cR     the set Z.(u )CRK consisting of all 

possible measurement vectors z. given by equation (5.2) which are con- 

sistent with the constraint set Q, the system equation (5. 1) and the control 
A 

vector u  .    In other words we have z.eZ.fu ) if and only if there exists a o 1     1' o J 

vector q =   (x^, w^, w'j, .. .w^^j, v'j, v^, .., vJ^^'eQ such that 

zl = WwV^i1 
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n 

Similarly we define for k = 2, 3, . ., N-l the function 

^:R(k-l)8+km _   p{Rs) (5.9) 

which assigns to the vectors z., z-, . . ., z,    ., u  , u., .., u,    . the set 
A 8 
Z. (z., z,, •••»*ie_i»u  fU,,..,u._,)cR    of all measurement vectors z.   given 

by equation (5.2) which are consistent with the constraint set Q,  the previous 

measurement vectors z., z.t ■ . ., z.    .,  and the previous control vectors 

uo'ur  • -Vi 
We also define the function 

g:R(N.l)8+Nm _  p(Rn+Nr+(N.l)p) (5.10) 

which assigns to the vectors z,, z-i • • • i aM_i» u • ui» • •» UM_I t^e 8et 

Ä/ \«D
n+Nr+(N-l)p    ,   .. Q(z1,z2, . . ,zN_1.uo,u1, . ..Uj^^cR ,r of all vectors q  = 

(x1 , w* , w'., . . , wl,   i» *i • vl, . ., Vli_.) which belong to the set Q and are con- 

sistent with the measurements z.. z-, . ., z«.   .,  and the control vectors u , 

ur ' " "'"N-r    In other word8 a vector q = (x^, w^, w'j, . •. w^j, Vj, V^, . '.v^j)' 

belongs to the set Q(z1, z,, . .., zN   ,,u  , u., . . ., uN  ,) if and only if qe Q and 

the vectors x^, w^, . . . , W^J.V'J, . . ., V^j, Zj, . . . »^N-l^o' • * ' 'UN-1 to8etller 

satisfy the system and measurement equation (5. I) and (5.2) for all k. 

In order to simplify the notation we will make use of the following 

ve< 

to the controller at time k 

>ctor V . ,  k = 1, 2t . . .tN-l, which consists of all the information available 

*k   '   ^I'V * "W1! uk-r (5.11) 

A      A 
Using this notation we write for the control law jik and the functions Z. ,Q 

of equations (5.9) and (5. 10) 
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l4i,(z1.z2. ...zk.uo,u1, . ..UJ^J)  =   nk(Ck)   =   uk (5.12) 

A 
Zk(z1,z2.....Zk_1.uo.u1....uk.1)   =   Zk(Ck_1.uk_1) (5.13) 

A A    fc 
QizyZ^ ..,zN_l,UQtu1, . .,uN1)   =   Q(i»N_1,uN1) (5.14) 

It should be noted that for some vectors   b.    , it is possible that the 
A    * ^   ^ m 

set Zjfb ._,, uk  ,) or the set Q(» JJI > UM_I ) is empty for all u, _,e R 

implying that the vector » k_i   =   (z1,, zl, . ., z!    ., u' , ul, . . , ui   o)' is incon- 

sistent with the constraint set Q and the system and measurement equations. 

Notice also that whether the set Z. ( 5,    11 u,    ,) is empty or nonempty depends 

on the vector £ .    ^ alone ar.d is entirely independent of a,    ..    In equations to 

follow in which empty sets appear we will adopt the convention stated in 

Appendix I that the supremum of the empty set is -oo (sup <^  = -oo).   Another 

possible approach would be to restrict the domain of definition of the functions 
A A t. A       K 
Z, ,  Q to include only those vectors b .    , for which the sets Z. (bi    i» ui.   i)» 

^^'N-1,UN-1^ are nonemPty•    Since in any actual operation of the system these 

sets will always be nonempty this restriction results in no loss of generality. 

We are now ready to state and prove the following dynamic program- 

ming algorithm. 

Proposition 5.1:   Assume that for the functions H.   defined below we have 

-oo < Hk( Ck)i   k = 1,2,.., N-2,  for all vectors b .   such that the set z. .,(£., u.) 

is nonempty (for all UjC R    ),  and -oo < HM_I(»M_I) ^or all vectors bN  ,  such 
A    ► _ 

that the set Q(»N  i • UN   I^8 nonempty.    Then the optimal value J of the cost 

functional (5.7) is given by 

J   =   infEjfu^ (5.15) 
u 

o 
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>m where the function E, : R      -*   (-00, +00]  is given by the last step of the 

recursive algorithm 

V^N-l^N-P  =       Ä/r8UP F(x1.x2,..,xN,uo.u1,...uN_1) 

(5.16) 

Hk(Ck)   =   inf Ek+1(Ck,uk), k=l,2...,N-l (5.17) 
uk 

Ek+i(Ck'uk)= "JP   tr        "k+i^k'VW 
zk+l   Zk+ltik    k' K+l      K+i     K,   K (5.18) 

^l^k+l^k'V 

Proof:   Consider the cost functional (5.7) 

J^o.Hj.'..^j) =   s^P F[x1,x2..,xN,jio,ji1(C1), ...^^(Cj^j)] 
qcQ 

(5.7) 

and the functions 

JN-1^V,V'*,>AN-2^ =     inf J^o,lil'* •'^N-l^' (5-19) 
''N-l 

Jk^o, ^1'""^k-l^ =   inf Jk+l^l^''''^k^    k=1.2»--.N-2 

^k (5.20) 

We have for the optimal value of the cost functional 

J   =   infJjOi )   =   infJjO^) (5.21) 
u, u 
^o 0 

To prove the proposition we will recursively show the equations 

N-l(   N-l5 

(5.22) 

zleZl(Uo)      zN-lcZN.l(tN-2'uN-2) 

mm 
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k 0   '        k '      VW    V^k-rVi) k   ' 

where in the above equations u,   denotes,  for all k,  the value of the function 

|ik at the point C k. 

The equation (5.15) which is to proved follows then by comparing 

equations (5.21) and (5.24). 

We begin by proving equation (5.22).    Consider the function EN of 

equation (5. 16) 

EN(^N.1'UN-1)=      /^.pP .F<xl'x2'-"xN'W--'uN.l 
qea(fcN-ruN-l' 

) 

We have EN(CN_1,uN_1) = -oo for all vectors C ^ such that Q( CJ^.J.UJ^J) 

= ^(for all uN .cR1") and we have EN(CM_I»«M.I) > -oo otherwise since the 

function F does not take the value -oo. By the assumption that HM_I(»IM.I) > 

-oo for all C N_j for which Q(fiN_1,uN_1) 4 ^ we have 

"N-I^N-^ = inf    EN^N-1'UN-1) = ■<x>• for a11  ^N-l 8uch that 

UN-1 

S^N.l'uN-l) =* 

HN-1^»N-1^   =     inf   EN^N-ruN-l^ > "00,  for a11  ^N-l 8uch that 

UN-1 

Q^N-l'uN-l)^ 

Thus for every €   > 0 there exists a function 

>iN.1>e:R(N-1)(8+m)~ Rm   suchthat 
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(5.25) 

EN^N-I'^N-I.^N-I»   ^   inf   EN^N.r'iN.l^N-l" + 

=   inf   E^CN^.UN.P + C   =   H^jCC^J+e 
UN-1 

We have now from equation (5. 22) for any fixed functions \i. , p,,. ., 

^N-Z ^^ Uo = ^o' ui = ^i( 5i) UN.2 = ,AN.2( ^N.2) 

JN   l^o'^l''"^N  2^ = inf    8up   ^^xl•u2, ,,,xN,uo,ur ••,UN-1^ 

=      inf        sup        sup sup     F(x1,u2,..,xN,u/u1,..,uN j) 

^N-l zlcZl(uo)      »N-l^N-l^W^-Z^ ^^N-l^N-D 

=     inf sup .. .«up ^N-l^N-l^N-l" 

< sup     .... sup EN^N-I^N-I.C^N-I» 

(by using relation (5.25)) 

< sup       .... sup x   
inf   EN^N-l^N.l^N.l" + c 

VVV      ZN-1€ZN.1(6N-2'UN-2)»XN-1 

(by using the minimax inequality) 

< inf «PP     •■.. jup EN^N-I'^N-I^N-I"   +c 

^N-l   'l62!^     1N.leZN.l^N.2'^-2) 

'-   JN-I^O'^I ^N-Z^6 

Since these relations hold for any c > 0 we have equality throughout 

the above algebra proving equation (5.22) 

J
N-I^0^'-"^.2

)
 

=    8£P   ;•••       * 8Uj> . inf ENIWWW 
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SAip     .... A8UP,, "N-I^N-P 

By using now equation (5.22) the equation (5.23) can be proved recursively 

for all k by using identical arguments as the ones used above to prove 

equation (5.22).    The conclusion of the proposition then follows from 

equations((SL21) and (5.24). Q.E.D. 

We remark that the value H. ( >. ) of the function H.   of equation (5. 17) 

has the interpretation of the "cost-to-go" at time k from the point of view of 

the controller on the basis of the current information vector £, .   If the k 

vector  ».*■ consistent with the constraint set Q and the system and mea- 

surement equations (as it will always be in any actual operation of the system) 

the value H. ( £. ) is either a real number or +oo.   In the case where the set 

Q is bounded a value of +oo indicates similarly to the related case discussed 

in Chapter 2 that there exists a disturbance selection policy (on the part of 

Nature) that can cause a violation of a state constraint regardless of the 

control law that the controller uses subject to the control constraints that 

the extended real valued function F of the aoat functional (5.7) implies. 

The optimal control law if it exists can be obtained from the algorithm 

as 

Hk(»k)   =   V k= 0, lt...,N-l 

where u,   is the point where the infimum is attained in equation (5.17) for 

the fixeo point b. . 

The dynamic programming algorithm of Proposition 5.1 can be 

profitably interpreted in terms of game theory, and in particular in terms 
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of multistage games of perfect information. *       '   The optimal value of the 

cost J can be viewed as the upper value (or min-max) of a game played by 

two opponents, the controller selecting the control law    |x  IKII • ■ • ^KT  J   • 

and Nature selecting the uncertain quantities q from the set Q.    The infor- 

mation based on which the decision of the controller is made,   is fixed by 

the form of the functions \i,,  i.e.,  by the information vectors   ». .    Since 

however only the upper value of the game is of interest here a variety of 

equivalent methods of selections of the vector q and corresponding infor- 

mation patterns can be assigned to Nature.    One such information pattern 

and method for selection of the components of the vector q corresponds to 

the following sequence of events 

(1) Controller selects u ' o 

(2) Nature selects z   from the set Z.(u ) 

(3) Controller selects u. 

(4) Nature selects z. from the set Z^Uj.u ,u.) 

(2N-1)   Controller selects vu,, 

(2N)        Nature selects all the uncertain quantities q = 

^o* wo,wr ' '^N-r vr^ * "'^k-i^ from the 8et 

Q^N-I^N-P- 

Each selection by either Controller or Nature is made with full knowledge 

of the outcomes of previous selections. 

This sequence of events is  fictitious., however it accurately reflects 

the sequence of events as viewed by the controller whose only information 

concerning the course of the game at time k is the information vector >. , 

i. e.,  all measurements,  and all control selections up to that time. 
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A moment's reflection shows that in fact the dynamic programming 

algorithm determines the (pure) value J of the game of perfect information 

described above.    This value is the same as the optimal cost J of the Prob- 

lem 5. 1. 

Finding the optimal cost J and the optimal control law from the dy- 

namic programming algorithm of Proposition 5. 1 is in general a very dif- 

ficult task.   Part of the difficulty stems from the fact that, loosely speaking, 

the objective of the controller is dual in nature; first to actuate the system 

in a favorable fashion and second to try to improve the quality of his esti- 

mate of the uncertainty in the system.    This is a familiar situation from 

stochastic optimal control,  known as dual control problem/     ' the for- 

midable complexities of which have been widely discussed in the literature. 

In stochastic optimal control insight into the structure of the optimal con- 

troller,  and its dual function,  can be obtained through the notion of a suf- 

ficient statistic;      '    Similar insight will be obtained for the minimax con- 

troller of this chapter by introducing in the next section the related concept 

of a sufficiently informative function. 

4. Sufficiently Informative Functions 

Let us consider the following definition: 

Definition 5.1:    A function S.: R  *        ' -* 21   where 21   is some space will 

be called sufficiently informative with respect to Problem 5.1 if there exists 

a function E, .. :2i x R      -»   [-oo, +oo]  such that 

Ek+i^k^v = Ek+A'V <5-26> 
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where E.    , is the function defined in equations (5. 16), (5. 18) for k = 0, 

1 N-l. 

The value of a sufficiently informative function at any point will be 

called sufficient information. 

The clear consequence of the above definition is that if S,   is a suf- 

ficiently informative function and an optimal control law |i.   exists,  then 

this optimal control law can be implemented as the composition 

where |1* is a suitable function which can be determined by minimizing the 

function E.    . of equation (5,26) with respect to u, .    As a result the control 

at any time need only depend on the sufficient information  S. ( >. ),  and 

therefore if this sufficient information can be more easily generated or 

stored than the information vector   £.   it may be advantageous to implement 

the control law in the form of equation (5.27). 

Factorizations of the optimal control law into the composition of two 

functions as in equation (5,27) have been widely considered in stochastic 

optimal control theory, and are commonly referred to as separation theo- 

rems.    In such problems the /unction S.  or its value is usually called a 

sufficient statistic.    Particularly simple sufficient statistics have been 

found for problems involving a linear system, linear measurements and 

Gaussian white input and measurement noises. In other problems suf- 

ficient statistics of interest take the form of conditional probability density 

functions conditioned on the information available. Such sufficient 

statistics imply the factorization of the optimal control law into an esti- 

mator S.   computing the conditional probability density function of some 
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quantities,  which may differ depending on the problem given, and an actuator 

li.   applying a control input to the system.    In Chapter 4 it was demonstrated 

that in estimation problems which involve a set-membership description of 

the uncertainty the set of possible states consistent with the measurements 

received plays a role analogous to that of conditional probability density 

functions in stochastic estimation problems.    Thus it should not come as a 

surprise that for the Problem 5.1 we will be able to derive sufficiently infor- 

mative functions that involve sets of possible system states (or other quan- 

tities) consistent with the measurements received.   In what follows we derive 

such sufficiently informative functions and further concentrate in the well 

behaved case of a linear system and an energy constraint on the uncertain 

quantities for which,  as was demonstrated in Chapter 4, the set of possible 

states can be characterized by a finite set of numbers.   We first introduce 

the following notation. 

We denote for all k by 

k    1* * * * *''k* ^^k* ' ' ' ' WN-1'^+1* ' ' *' VN-1'     k (5.27) 

the subset of R      *   ~   '    I   "  " IP which consists of all vectors (x., .... x. , 

w, , . .., wN  ,, v. . j, • • • > VM  I ) ^at are consistent with the measurements 

z,, s.,... i z, , the control vectors u , u,,...,u.    .,  the system and mea- 

surement equations (5. 1), (5.2) and the constraint set q«Q. 

We denote similarly by 

Sk<VWk wN-l'Vk+l vN.ll   ^k) (5-28) 

SJ^XJ.XJ, ...,xkl Ck) (5.29) 
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Sk(xk| Ck) (5.30) 

the respective sets of all possible quantities within the parentheses that are 

consistent with the information vectoi   5. , the system and measurement 

equations, and the constraint qcQ. 

With the above notation we have the following proposition. 

Proposition 5.2;   A sufficiently informative function with respect to Problem 

5. 1 is the function 

-   :Rk(s+m) _  p(Rkn+(N-k)r+(N-k-l)p)x Rkm 

given for all k by 

V^ =   lSk{xl"-'Xk'wk'--'wN-l'vk+l'--'vN-l^k)'VUl'-"Uk.l1 

(5.31) 

Proof:   Consider the function EN of equation (5.18) 

EN(SN-1'UN-1^ =       A/V11* ^•^••••^•Uo'Ul""llN-l) 

This equation can also be written as 

EN( ^N-l^N-P 

sup 
(x1,x2, ••.XN.1.

WN.I)€SN_I(XI« • •'xN-l,wN-l',,N-l) 

Flxj.^. ...^_lf^_1(^l_1,uN_1,^_1).uo,ulf..,uN_1l 

= EN^sN-i^xr ••,xN-rwN-i'Tsi-i^uo,ur ••,UN-2'UN-I^ 

for a suitable function Ej-,  proving that the function SN_,(CN_1) of equation 

(5.31) is sufficiently informative according to Definition 5.1. 
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The function HN  , of equation (5. 18) can now be written as 

"N.l^N-l)  =   inf 1Nl^.l(xl"-3<N-rwN-ll^N-l)'Uo'ul""uN-2'uN-l1 

"N-l 

=  "N-l^N-l^'-'^N-l'^-l'^N-l^^^r-'^N-Z1 

for a suitable function H..  ,. N-l 

Now for the function E^, of equation (5.16) we have 

EN-l(CN-2»uN-2) = fr^t » 
ZN-1CZN-1( ,»N-2,uN-2, 

T!N.l^.l<xl""^I.l'^.l^N-l)'Uo'Ul"-'UN-21 

(5.32) 
A f 

The set Zj,,   ,( 'M.J'^N-Z' can *** described as 

Z^M(^N-2•uN-2, =  {2N-llzN-l = i^-lIfN-2(3,N-2'uN-2'^-2)'^-l1' 

^-2rv^-2,vN-P€SN-2^-2,V^I-2,^SI-l'^N-2^ 
(5.33) 

where the set Sja  2(xjl|i_2i WM -• VM.i I »N.?^ " t^e 8et 0^ a^ P088^!6 vectors 

(XN 2' WN 2' VN   I ^ w^c^ are consistent with the measurements z., z2,.., z^. - 

and the control vectors u fu.,. «IU^  - according to the system and measure- 

ment equations,  and the constraint set Q. 

The set ^fj_2^xN-2,w'N-Z,v'N  J   N 2^ can '>e 0^tained as the projection 

of the set SN_2(xj, . •. XN.2» wN-2'wN-r vN-l'*N-2^ on the 8Pace o{ vector8 

^N-Z* wN-2, VN-1^'    Therefore the equation (5.33) can be written in the form 

^N-l^N-2,uN-2) = ZN-l^-2(xl, ' ' • ^1-2» ^-2» ^-T ^-1' ^N-2,,l^I-2' 

for a suitable function ZN   ,(', '). 

Also the set Sv,   .(x,, .. »XM   i» WM_I I TJ-i) can ^e written as 



-112- 

SN-1(V-"5,N-1'^-1I^N.1)=  ^'^''-^N-l^N-l' <5-35) 

XN-1 =   {N-2^xN-2,nN-2'wN-Z^ 

ZN-1   =   hN-l^xN-r ^-l^^l'^'' •,XN-2,WN-2,WN-1'VN-1^ 

fSN_2(x1,...,xN_2,wN_2,wN_1,vN_1|CN_2)} 

=   SN-1 ^N^^l* * ••xN-2,wN-2,wN-^vN-l'^N-2),  ZN-1,UN.2^ 

* 
for a suitable function SN   .(•, ♦, •). 

By substitution of equations (5.34), (5.35) in equation (5.32) we 

obtain 

EN.l^-2'UN-2) = **   fe   ^P It      ^ 1 
zN-leZN-lPN-2(xl"-',,N.2'^.2'^-l'vN-ll^-2)'^|.21 

HN-llSN-llSN-2(xl',-'^l-2'^-2,wN-l'vN.lltN-2)'2N-ruN-2l'uo ^J 

=   ^-l^N-Z^' •••xN.2,wN-2'wN-l'vN-ll^N-2),uo,Ur,,'UN-2] 

for a suitable function EN   .,  proving that the function SN_2( »M.?) 0^ e<luat*on 

(5.31) is sufficiently informative according to Definition 5.1. 

By using identical arguments as above the function S. ( b. ) of equation 

(5.31) is proved to be sufficiently informative for all k. Q.E.D. 

From the proof of the above proposition it can be easily seen that a 

simpler sufficiently informative function can br. derived if some of the states 

x.,  i = 1,2,..,N do not appear explicitly in the cost functional (5.7).    Thus 

if,  for example,  the function F ii. equation (5.7) is of the form 

F(x1,x2, ..,xN,uo,u1,..,uN_1) =   ffrj^u^Uj, . ..UJ^J) (5.36) 

then the function 
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Sk(^k)  =   ^W^+l'-^-l^k+FVz—^-l'^^o^l uk-l] 

(5.37) 

is sufficiently informative. 

Further simplifications result if the constraint set Q for the un- 

certain quantities has a property implying that the set of values that any 

particular uncertain quantity can take is independent of the values of the 

other uncertain quantities.    We will consider the case where the set Q 

has the form 

Q =  ^V w0'
wi» ••'v^.i»vi'v2' ••• vN-l'   xo€Xo,v,i€Wi' i= 0'1'- •'N"1' 

vkeVk, k= 1,2,..,N-1} (5.38) 

where X  , W., V.  are given subsets of the corresponding Euclidean spaces. 

The case where the constraint Q is of the form (5.38) should be considered 

analogous to the case of white input and measurement noises in the corre- 

sponding stochastic problem.   We have the following proposition: 

Proposition 5. 3:   Assume that the constraint set Q has the form of equation 

(5. 38).    Then the function S.   given for all k by 

Sk^ V =   [Sk(xl'x2',"xk' V'W ••,uN-ll (5-39) 

is sufficiently informative. 

If the function F in equation (5.7) has the form of equation (5. 36) 

then the function S.   given for all k by 

V^ = ^kK'^'W •••UN.I1 ^•40) 

is sufficiently informative. 



-114- 

Proof:   The proof follows by trivial modifications of the proof of Proposi- 

tion 5.2 to take into account the special structure of the set Q in equation 

(5.38). Q.E.D. 

The above propositions clearly illustrate the dual function of the 

optimal controller. By equation (5.27) the optimal control law is of the 

form 

ilk=<VSk (5.41) 

i.e.,  it is the composition of the sufficiently informative function S.  and the 
-* 

function \i,.    The function S,   in the case of Propositions 5.2 and 5. 3 re- 

- $ presents an estimator and the function \i,   represents the actuator.    Al- 

ternatively the optimal controller can be viewed as being composed of two 

cascaded parts.    The first part produces an estimate set and the second 

part accepts as input this estimate set and produces a control vector.    This 

control vector is stored and recalled in the future by the controller. 

It should be noted that there is an important difference between the 

sufficiently informative functions derived for the Problem 5. 1,  and suffi- 

cient statistics for the corresponding stochastic optimal control problem 

in that the possible additivity of the cost functional (5.7) results in no sim- 

plification for the sufficiently informative function.    Thus the function S, 

of equation (5. 31) cannot in general be simplified if the function F in the 

cost functional (5.7) is of the form 

N 
F(x1,x,...,xN.uo,u1,...uN_1) =   S   Ux-.u.^) 

where f. and g.   . are given functions.    In the corresponding stochastic prob- 

lem however important simplifications in the sufficient statistic result: 

mmfm 



Thi1 diffe;rence i1 due to the fact that wh•r•a• th expe tation operation 

ia linear and di1tribute1 over addiU n the maximtaaUon operation h not. 

The equation ( • 41) whi h .. "' ' ftltrat I th ltru tur or th optimal 

cont,.ollaw a1 the omJIOilU n t In •Htuat · 1 ft an • tult r an provid 

in•iaht concernin1 the mttl •Uv •" t' lttt I tll utat I n t thl ptimal 

control law. ror eaam,lt ••••• ut .. ' 
ca1e where the 11Umat r h11 th •• r Un ar 

ay1tem and an enePJY 

ciently informative f\ln _ U n1 

characteriatd by a 1mall Itt 

A• an Ulu1tration w• 1t1t1 th• I 

tt thl1 11 &anb 

ttl ut· • 'uulvtly. 

"' 
Propo1ition 5, 41 Con1hler the ,,. ial 11 I l•tn • I wh r the •v•tem 

ia linear 

(5.4Z) 

with linear meaaurementa 

k = 1, Z, .. , N-1 (5.43) 

and the set 0 for the uncertain quantitiea il 1pecified by the energy constraint 

1 N-1 1 N-1 l 
x' V x + I: w!O~ w. + I: v!R~ v. < 1 (5.44) 

0 . 0 i= 0 1 1 1 i= 1 1 1 1 -

whert; '\If, 0., R. are positive definite symmetric matrices for all i. 
1 1 

Assume also that the cost functional is of the form of equation (5. 36J 

{5.36) 

. k(s+m) n km . Then the functlon sk : R - R X [ 0, 11 X R glVen by 
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Sk(^k)   =   lxk, fi (k)iuofu1,..,uk-1] (5.45) 

is sufficiently informative for all k, where the n-vector x.  and the scalar 
2 

6   (k) are generated recursively by the estimator equations 

x.,   =  Ax + B.u. +2.J,,..1C'     Rri-Cz, .,  - C.^.A.^.-C.^.B.u.) i+l ii        ii        i+l|i+l   i+l   i+l* i+l        i+l   i. i      i+l   i i' 

i = 0,l,..,k-l (5.46) 

x.   =    0 (5.47) o 

^ili   =   ^li-l^K1^"1 ^48) 

zi|i.i = Ai-izi.i|i-iAl-i +Gi-iQi-iGUi <5-49) 

62(i+l) =  62(i)+(Z.+1-Ci+1A^i-Ci+1Biui)'(Ci+1Sl+l|iC;+1 + Ri+1)-1 

(z...  - C.^.A.x. - C.^.B.u.) (5.51) x i+l i+l    i i        i+l   i i x ' 

62(0)   =    0 (5.52) 

Proof:   From the results in Chapter 4 we obtain that the set 

^^k'^*•,,wN-rvk+r•*,vN-l' 'k^ is 8ivenby 

Sk(xk, wk, . •. wj^.j. vk+1, •.. v^j | Ck) 

=    {xk, Wk, • •. wNrl. vk+1, . ., vj^.j | (xk-xkl'^f k(xk-$k) 

N-l N-I 
+   S   w!Q: w. +    S      v'.R.v.   <   1 - 6£(k)} (5.53) 

i=k.,X    1      1       i=k+l   1   1     1 

Since the matrix ^vijis precomputable and the matrices Q. and R. are given 

the set S, (x. , w,, . . , WM_II ^+1» • •» VN-1' 'k^ ^8 completely determined from 

^M^MMMMMaaMMMMMM 
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A 2 the vector x.  and the scalar 6  (jk).    By combining the equation (5. 37) and 

the Definition 5.1 the result follows. Q.E.D. 

Thus for the problem of the above proposition the estimator part 

of the optimal controller can be completely and efficiently characterized. 

For the reachability case of this problem,  i.e,,  the case where 

N-l 
f<xN,Uo'Ur*,,UN-l^ = 6(XN'XN^+   .Z 6(uil Ui) 

1 -. ft 

with XJ^J, U. given sets, the actuator part of the optimal controller can also be 

completely characterized as we will demonstrate in the next chapter.   Sim- 

ilar results with the Proposition 5.4 can be obtained for a general cost func- 

tional of the form of equation (5.7).    However in this case,  as can be seen 

from the Proposition 5.2 and the results in Chapter 4,  the sufficiently infor- 

mative function will be of the form 

2, Sk(V =  [öl|k^2|k""*k|k'6  (k).Vul'--uN-l1 

where x.i.   will be given by smoothing equations for all i <  k. 

For the case of a linear system with instantaneous ellipsoidal con- 

straints on the uncertain quantities the sufficiently informative functions of 

the Propositions 5.2 and 5.3 cannot be characterized by a finite set of numbers 

neither can they be easily generated by an estimator as was demonstrated in 

the previous chapter.    This indicates that for such problems the characteri- 

zation of the optimal control law should be in general very difficult.    How- 

ever for the problem of the reachability of a target tube which involves such 

constraints on the uncertain quantities a method for obtaining suboptimal 

controllers that can be more easily implemented will be developed in the next 

chapter. 



-118- 

5. Discussion and Sources 

The basic method for the solution of minimax control problems 

with imperfect state information is the dynamic programming algorithm 

of Proposition 5.1.   It should be noted that both in the development and 

the proof of this algorithm we did not make use of the fact that the state 

space,  control space and disturbance spaces are Euclidean spaces and in 

fact the Proposition 5.1 can be generalized for the case where these spaces 

are arbitrary sets. 

In general the solution of the problem by dynamic programming is 

a very difficult task, and only for simple systems and simple constraint 

sets such a solution can be practical. 

It appears that the most well behaved special case of Problem 5.1 

is the case where the system is linear and the set of the uncertain quantities 

is specified by an energy constraint.    For this case a sufficiently informative 

function can be recursively generated by estimators developed earlier in 

Chapter 4.    Even for this case the actuator part of the optimal controller 

may not be easily characterized.    In the next chapter we will give a pre- 

cise characterization of the actuator for the special case of a reachability 

problem.    However it appears that there is no special case of the Problem 

5. 1 with a solution as elegant as that provided by the separation theorem 

of stochastic optimal control for linear systems and quadratic criteria.     "" 

The only source for minimax control problems with imperfect state 

information appears to be the original work of Witsenhausen;      ' who dem- 

onstrated the application of dynamic programming to this problem.    The 

use of dynamic programming in sequential games has been known at least 

iaaaBaMBMMMHHi 
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since the proof that finite games of perfect information have a saddle 

point/     '  The concept and the development of the Proposition 5.1 is 

based on game theory considerations, and it involves the construction of 

a sequential game of perfect information in its extensive form:   u '   The 

algorithm of Proposition 5.1 differs in its form and is more general than 

Witsenhausen's algorithm however the same basic ideas are involved. 

The notion of a sufficiently informative function is introduced for the first 

time here in analogy with the notion of a sufficient statistic of stochastic 

control.   It has mainly theoretical value in that it forms the basis for 

demonstrating the decomposition of the optimal controller into an estimator 

and an actuator.    This decomposition provides insight into the structure of 

the optimal controller, and in some cases it can serve as a starting point 

for developing suboptimal control schemes. 



CHAPTER 

SOME REACHABILITY PROBLEMS WITH IMPERFECT 
STATE INFORMATION 

1. General Remarks 

As was demonstrated in the previous chapter it is in general very 

difficult to characterize completely the optimal controller in minimax 

control problems with imperfect state information.    For the case of a 

linear system with an energy constraint for the uncertain quantities it 

was shown, however, that the optimal controller may be realized as an 

estimator followed by an actuator and that the estimator can be easily and 

efficiently characterized using the results of Chapter 4.   We shall dem- 

onstrate in the next section that for the case of the problem of the reach- 

ability of the target set the actuator part of the optimal controller can also 

be precisely characterized,  and thus we shall give a complete solution to 

this problem.   However the implementation of the optimal controller will 

still be quite difficult despite the simplification achieved. 

In Section 3 we will consider a problem of reachability of a target 

tube which involves a linear system and instantaneous ellipsoidal constraints 

for the uncertain quantities.    For this problem it appears that,  in general, 

a practical implementation of the optimal control law is indeed very difficult. 

For this reason we present a suboptimal control scheme for this problem by 

making use of the bounding ellipsoid estimation algorithm presented earlier 

in Chapter 4. 

120- 
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2. Reachability of a Target Set for the Case of Energy Constraints 

We first formulate the reachability problem that we will consider 

in this section. 

Problem 6.1;   Consider the linear discrete-time dynamic system 

xk+l   =   Akxk + Bkuk + Gkwk ' k=0,1,..,N-1 (6.1) 

with the linear measurements 

zk   =   Ckxk+Vk' k= 1,2,...,N-1 (6.2) 

where x.eR  ,  k=0, 1,..,N, is the state vector, u.cR    , k = 0, 1, . ., N-l, 

is the control vector, w, cR , k = 0,1, .., N-l,  is the input disturbance 

vector, z.cR  . k= 1,2,..,N-l, is the measurement vector,  v.eR^,  k = 

1, 2, .., N-l is the measurement disturbance vector, and A. , B. , G  , C 

are given matrices of appropriate dimension. 

The initial state x , and the disturbances w. ,vl  are assumed un- o* k    k 

known except that they satisfy the energy constraint 

x^lxo+ JjK-iQkli-k-i+ vkRklvk) i 1 <6- 3> 

where^^,    „R,,   k= 1, 2, .., N are given positive definite matrices. 

Attention is restricted to control laws of the form 

Hk:Rk(8+m) - Uk,        k= 0,1,..., N-l 

taking values 

uk   =   fJl^Zra52**"zk,Uo'ur ",Uk-l^    k=(:)'1»-"N-1 
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.m where ix    is interpreted as a constant vector and where U. C R    ,  k = 0, 

1, .. ., N-l, are given sets.    It is required to find a control law in this 

class such that the final state xN of the resulting closed-loop system be- 

longs to a given set X^CL R    for all possible values of the uncertain quan- 

tities. 

We will say that the target set XN is reachable if there exists such 

a control law. 

The above problem can be recognized as the special case of Prob- 

lem 5.1 of the previous chapter where the system and measurements are 

linear, the constraint set Q is specified by the energy constraint (6.3) and 

the cost functional is 

N-l 
J(u ,K       ..»*       ) =    8up[6(xN|XN) +   Z6(u|u.)] (6.4) 

01 ^   *        qeQ "     1N       i=0      1     1 

where 6(y| Y) denotes the indicator function of the set Y.   Consequently it 

follows by Proposition 5.4 that for this problem the optimal control law is 

of the form 

Hk(z1,z2, ...ZJ^U^UJ»...^^) = ^Jl^t* (IO.UJ.UJ, ...UJ^J]   (6.5) 

where x,  and 6 (k) are given for all k by the estimator equations (5.46) through 

(5. 52).    We will now characterize the optimal control law (6. 5) in the follow- 

ing proposition. 

Proposition 6.1:   Consider the sets X.CRn x [ 0, 1],   k = 0,1, .., N-l defined 

recursively by the relations 



-123- 

^N-l   =   ^N-1'62(N"1,I        3       uN-lcUN.l        suchthat 

<XN-1 -^N-l^^N-llN-l^N-l -^.l^^-^N-^N-ll1-*2^-1^ 

(6.6) 

X.   =   {x.,62(k)|       3       U.CU. suchthat k       VÄk,w  ^^       -        Tc     k 

KAA + Vk + ^+1 |k+l
CUlRkildk)' 

(«2(k) + d^C^^^C^j + \+1)'
l\)uK+i' 

Vdk' ^k+l^llk^+l +Rk+l)"ldk ^  1-62<k» <6-7) 

k= 0, 1, ...,N-2 

where the matrices S.   . i.   ., S,    . i.   are given for all k by the equations 

(5.48) through (5.50). 

Then the target set Xj. is reachable if and only if 

(0, 0)cXo (6.8) 

Under these circumstances a control law {(1 ,£., . • t ^N  i) that achieves 

reachability can be obtained as 

ük =  ^k(zv..,zk,uo...,nk_1) =  il*[^k,62(k)] 

where for each pair [x. , 6  (k)]eX.  the vector ü,  is such that ü. ell.   and if 

k = N-l, we have (AN_1xN_1 + Bj^jüj^^ + GN_1wN_1)€XN for all xN_l. 

wN.l with <XN-1 "Vl^N-llN-l^N-l "V^ + ^-iQN-^N-l 1 l-^-D» 
if k = 0. 1. ... N-2, we have [ (A^ + B^ + Zk+11 ^0^*^). 

(62(k) + ^(C^S^i^ + \+ir\)U\+l for all dk with 

^k+i^ilk^i^k+i)"1^!1-62^ 
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Proof: We shall use the dynamic programming algorithm of Proposition 

5. 1 for the cost functional (6.4), and the equations (5.46) through (5. 53) 

in Proposition 5.4.    We have from (5. 17) 

"N-I^N-I*  =    inf Ä//
UP I6<AN-lxN-l+BN-luN.l 

UN-1  ^Q^N-l^N-P 

+ GN.lwN.llXN>+   .V<uilUi>l 
i=0 

^ / '^       /<. if WiWtN-l + BN-luN-l 
UN-1 ^N-r^-l^^N-l^N-l'^-l'^N-r 

+ GN.I^.IIXN)+ .^6^ilUi» 
1=0 

Since by equation (5. 53) 

Vl^N-l'^-l^N-l) =   ^-I'^-l'^-r^-l^^-llN-l^-l-^N-l) 

+ wk.lQN-lwN.l   <   l-«Vl)} 

we have that for every CJ^J such that SM.I(XN_1'^-il»N-l^ ^ 

7 A        N-2 

"N-I^N-P = 6^N-1'6 ^-^^N-l1 + Z «^ilUj) 
i= 0 

where AN  . is the set defined in equation (6.6). 

Using now equations (5. 17), (5.18) we have 

HN-2^N.2)  =     inf *8UP, {«[Vr^-^N-ll 
uN-2 ^N-l€ZN.llfcN-2,UN-2, 

N-2 
+    Z 6(u |U.)} (6.9) 

i=0      1    l 
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for every C N_2 8UC^ ^^^N-l^'N-Z^N-Z^ ^ ^   •   According to the equations 

(5.46), (5. 51) we write 

*N-I 
= AN-Z^N-Z^N-Z^-Z + ^N-IIN-^N-^N-^N-Z   

(6-10) 

62(N.1)=   rt*'V + tU-^.l^llR-Z^-l + *N.S\4   t6'11) 

where 

''N-Z  "   'N-l " ^N-l^N-Z^N-Z ' ^N-^N-Z^-Z ^M_9    =    ZNI_1   "  ^-M-I^M.^X^J   ,   -   CN   , B^j   ,UN    , (6.1Z) 

Also it can be easily proved using the results in Chapter 4 that the 

set ^N.2(^.2.uN.2)iB given by 

^N-1^N-Z'UN.Z) =   ^N-l I dN-^.A-l|N^0N-l + ^-l^Z^ 1-«V2)} 

where djq_2 i" given by (6.1Z). 

From equations (6.9) through (6.1Z) it follows that 

HN-Z^N.Z> = «IVZ'^-^^N-Z1 +    'Z  6<uiIUi> 
i=0 

where XIyt_2 i» defined in equation (6.7). 

By proceeding similarly we obtain that the optimal value of the cost 

functional (6.4) is 

J   =   6[xo.6
2(0)|Xo] 

2 
Since we have x    = 0,  6  (0) = 0 we obtain o 

j   =   0     < > (0, 0)€X 

J   =   00    < > (0, 0)^X o 

Since we have J = 0 if and only if the target set XN is reachable the condition 

(6. 8) is proved. 
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The fact that the optimal control law it of the form indicated in the 

proposition can be easily teen from the preceding argument!. Q.E.D. 

A closer examination of the Proposition 6.1 reveals the following 

mechanism for the optimal controller.    First the estimator of equations 

(5.46) through (5.52) 

Vl  =  Vk + Bkuk + ZV+llk+lCUlRklldk ^13> 

62(k+n =   «2(k)+djt(Ck+1^+l|kCit+1 +Rk)-ldk (6.14) 

dk = »k+l -W^kV^+lVk <6-15> 

is used to generate the sufficiently informative function which in this case 

is Sk(Ck) =  I ^k, «2(k)l .   Then for any given 14^, 62(k)) eXk the controller 

selects the control vector u.  in a way that the "state" l^k+ii 6  (k+1)) of the 

estimator (6.13), (6.14) at the next time instant (k+1) will belong to the set 

X,   . for all possible values of the error residual vector d. 

dk= zk+i ■ ck+iAA - ck+iBkuk 

Thus in effect the optimal controller operates in a way that achieves reach- 

ability of the set X, ,. by the sufficient information (x. . ,,6  (k+1)]  and 
A 

eventually reachability of the set XN  , by the sufficient information 

[xN  ,,6  (N-l)].    The sufficient information [x., 6  (k)]  can be viewed as 

the state of the (n+l)-dimen8ional system defined by the equations (6.13), 

(6.14) with the initial state 

lxo,6
2(0)]    =   (0,0) 

This system is driven by the control u, ,  and perturbed by the disturbance 

MBMaMaMaMi 
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vector d.  of equation (6.1 5),  and it it linear in the state and the control 

but nonlinear in the disturbance.    Furthermore the disturbance d.   satii- k 

fiei at each time the constraint 

which is a state-dependent constraint. 

We can conclude from the above discussion that in effect the solu- 

tion of the Problem 6.1 involves the solution of a target set reachability 

problem with perfect state information.   This reachability problem however 

does not involve the original system (6.1) but instead it involves the (n+1)- 

dimensional estimator described by the equations (6.13),  (6.14) the state 
A      2 

of which is the sufficient information [x.,6  (k)) .   The objective of the 
A 

controller is to achieve reachability of the target set XN   . by the final 

state [xN_1,6
2(N-l)l of this estimator since if (xj^^, «2(N-l))eXN_1 the 

reachability of the target set X»^ can be guaranteed by equation (6.6).   Since 

the controller can use the estimator which produces at each time k the suf- 

ficient information [x.,6  (k)] this is a reachability problem with perfect 

state information.   However this problem is more complicated than the 

reachability problems that we considered in Chapter 3 since the disturbance 

d.  of equation (6.15) enter J nonlinearly in the equation (6.14), and the con- 

straint (6. 16) is state dependent.    For this reason the construction of the 

sets X. , k = 0, 1, ..,N-1,  is considerably more complicated than the con- 

struction of the effective and modified target sets that we considered in 

Chapter 3.   As a result the implementation of the optimal controller of 

Proposition 6.1 is very difficult in general.    By using however internal 

approximations to the sets X.  it is possible to derive suboptimal control 
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schemei that achieve reachability,  and can be more easily implemented. 

We shall not pursue this matter here since our primary objective in this 

section has been to demonstrate the interesting fact that,  for the case that 

we consider,  the problem of state reachability with imperfect information 

is equivalent to an estimate reachability problem with perfect information. 

3. Reachability of a Target Tube with Instantaneous 
Ellipsoidal Constraints 

In this section we consider the natural extension of the problem of 

the reachability of a target tube that was considered in Chapter 3 to the case 

where,  instead of having perfect knowledge of the system state,  the controller 

has access only to noise-corrupted measurements of the system output.    We 

will examine the case of a linear system and instantaneous ellipsoidal con- 

straints for the uncertain quantities.   As was explained in the previous 

chapter the implementation of the optimal controller for this problem is in 

general very difficult.   Our objective in this section will be to develop sub- 

optimal control schemes that achieve reachability of the target tube, and 

that can be more practically implemented. 

We will consider the linear system of equation (6.1) 

xk+l  =  Akxk + Bkuk + Gkwk ' k=0,l,..,N-l (6.1) 

with the linear measurements 

zk=Ckxk + vk, k=l,2, ...N-l (6.2) 

We assume that the initial state x   and the disturbance vectors w, , v.   satisfy 
O K      K 

the constraints 

■■■■■HHMI 
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Wk"* < 1. 

w*** < 1. 
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(6.17a) 

k = O.^.-.N-l (6.17b) 

k = 1,2,...N-l (6.17c) 

where¥,Qk, R,  are given positive definite matrices. 

We are seeking a control law 

Kk =  Rk(i+m) -   Uk k=  1,2. ...N-l 

uk ' ^*k(«l•t2••••lk•uo•ul••••uk-l, 

Uo =  VUo 

where U., k = 0,1, .. ,N-1, are given sets, which is such that the state x. , 

of the resulting closed-loop system (6.1) is contained in the given sets X. , 

k = 1, 2, .. ,N, for each k, and for all possible values of the initial state x 

and the input and measurement distrubances w. , v.  which satisfy the con- 

straints (6.17). 

We shall say that the target tube {X,, X,, .., XN} is reachable if 

there exists such a control law. 

Given at time k the measurements z., z-, • • • z.   and the prior con- 

trols u , u,,. »»u, _., the controller can calculate a bounding ellipsoid X, i, 

to the set X, i, of all possible states x,   consistent with these measurements 

and controls by using the bounding ellipsoid estimator of Proposition 4. 3. 

By taking into account the presence of control vectors in Proposition 4. 3 

we have for all k: 

xk|k = Kl^k" V^fkK ■ *k^ 1 - *z<k» (6-18) 



-130- 

2, 
where Eiu. x. . 6 (k) are given recursively by: 

Zi|i   =  K^^^illl^i^i1^'1 <6-19) 

^ (6.21) •^ I *> o 

^i+i= ^i +Vi+^+i^+iii+i^+i^+V'i+i-s+iVi-s+ÄV 
(6.22) 

Öo  =  0 (6.23) 

«2(i) =  (l-ßi.i)(l-Pi)«2(i-l) + Ui-qAi.1$i.1-CiBi-1u1-1)' 

l^-^'^Ali-l^^i'^'^i-S^lVl-^i-lVl) 
(6.24) 

62(0) =  0 (6.25) 

and P._i» Pj» i = 1,2,.., N, are any real numbers with 0 < p._. < 1, 

0 < p. < 1. 

Consider now the ellipsoid 

Sk =  {x|x'Z^|kx  <   1}   , k= 1,2,..,N (6.26) 

The ellipsoid S.  is precomputable, since the matrix 211,  does not depend on 

2 the measurements,and expresses the maximum possible (6  (k) = 0) amount 

of uncertainty about the state x,  when the estimate x.  is known.   Since from 

equations (6.18), (6. 26) we have 

XklkCXk|kC*k + Sk <6-27) 

MMMMMHHHMMaMHiai 
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it ii clear that in order for the state x.  to belong to the set X.   it is suf- 

ficient that the state estimate x.  belongs to the set 

5k   =    {^klxk + SkCXk} (6.28) 

Thus for the purpose of obtaining sufficient conditions for reachability,  we 

can shift emphasis from the problem of the reachability of the target tube 

{X., X.» • •, XN} by the system state x, , to the problem of the reachability 

of the target tube {X., X,, .. . i Ax.} by the state estimate x, .    This latter 

problem will be shown to be a reachability problem with perfect state infor- 

mation of the form that we have already considered in Chapter 3. 

By substituting equations (6.1), (6.2) into (6.22) we have that the 

estimate x.  is generated by the equation 

^+i = AkVBkuk + Lk+idk <6-29) 

where the lumped disturbance d,  is given by 

dk = ck+i Vxk - ^+ ck+iGkwk+ vk+i <6- 30> 

and the (precomputable) gain matrix Lj.» is given by 

= pk+i^+iik+ick+iRkii (6-3i) L, k+1 

Furthermore it follows immediately from equation (6.30) that d.  belongs to 

the known set 

Dk = ck+iAksk+ ck+iGkwk+ Vi <6-32' 

where S.   is defined by (6.26) and the ellipsoids W, , V.    . are specified by 

the constraints (6.17b) and (6.17c) 
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W.   =   {w. Iw'Q^w.   <  1} k       '"k'^k^k wk 

1 
Vk+1   =   {vk+l|vk+lRk+lvk+l   ^   1} 

Thua a sufficient condition for the reachability of the given target 

tube {X., X,. • • • • XN} by the system state x.   in the presence of imperfect 

information is that the target tube {X., X,« • • •» XN} defined by (6.28) be 

reachable by the state x.  of the estimator (6.29) in the presence of the 

disturbances d,  which belong to the known set D.  of equation (6. 32).   Since 

the estimate x.  is generated by the controller and known to him at each 

time k, we are faced with a target tube reachability problem with perfect 

state information of the form that was examined in Chapter 3. 

The solution of this estimate reachability problem can be given using 

the results of Chapter 3.    Define analogously to equations (3. 5),  through 

(3. 8) the effective target sets T,   ., and the modified target sets X,  by the 

equations 

XN   =   XN (6.33) 

Tk+1  =   {^+ Lk+1Dk)C$*+1} , k=0,l N-l (6.34) 

(6.35) 
X* =   {xkl(Akxk + Bkuk)eTk+ll  for some ukeUk}nXk 

k = 1,2, ...,N 

X* =   {$  |(A x    + B u )€T1, for some uoeUo} (6.36) 

Then the target tube {X,, X,, • • •, XN} is reachable by the state $.   of the 

estimator (6.29) if and only if 

A A* 
x    =   OcX o o 
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Since the reachability of the target tube {X., X,. • • •. XN} is a sufficient 

condition for the reachability of the target tube {X., X,,.. ., XN} by the 

■täte x.  of the system (6.1) in the presence of imperfect information we 

have the following proposition. 

Proposition 6.2;   A sufficient condition for reachability of the target tube 

{X1,X2,...,XN) is that 

A* 
OcX o 

where the set X    is given recursively by equations (6. 33) through (6. 36). 

The control law that achieves reachability of the target tube {X., 

Xj,..., X,,.} is the one that achieves reachability of the target tube {x., 

X-, ..., XN> by the estimate x.  of the estimator (6.29),  and it is of the 

form 

uk = f*k(xk), k= 0,1,...,N-1 

A possible method for obtaining such a control law which in addition is 

linear,  is to make use of the ellipsoidal algorithm of Sections 3, 4 in 

Chapter 3 assuming that the sets X.  and U.  are, or can be approximated 
* 

by, ellipsoids.    In this case we can use the following ellipsoid D.  which 

bounds the disturbance set D,  of equation (6.32) 

D*= {dk|dy(i-pk+1)-
1ck+1^+l|kck+1+p-|1Rk+1]-1dk < 1} 

The inclusion D.C Dk can be easily verified from equation (6.19), (6.20), 

(6.31), (6.32).    The infinite time version of the ellipsoidal algorithm can 

also be used for constant systems with constant constraint sets when the 

final time N approaches infinity.    In this case the infinite time bounding 

ellipsoid estimator will be used to generate the estimate x. . 
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It should be noted that in the derivation of the sufficient condition 

of Proposition 6.2 we have made several weakening assumptions.   We 

assumed that the controller uses the bounding ellipsoid estimator to pro- 

duce the estimate set X. i.  whereas the controller could conceivably cal- 

culate the exact set of possible states X. i. ,    Furthermore we have not 

taken advantage of the possibility to obtain a smaller estimate set by using 

the term 6  (k) in equation (6.18).   A stronger sufficient condition for 

reachability can be obtained by making use of this term.   However the 

additional complexity which would be introduced would make the resulting 

control scheme impractical.   On the other hand our approach to reduce the 

state reachability problem with imperfect information to an estimate reach- 

ability problem with perfect information results in a control scheme the 

implementation of which presents no more difficulty than the one considered 

in Chapter 3. 

4. Discussion and Sources 

In this chapter two reachability problems with imperfect state infor- 

mation were examined, both involving a linear system.   The first problem 

is a target set reachability problem where the constraint set for the uncertain 

quantities is specified by an energy constraint.    For this problem we char- 

acterized completely the optimal control law.    This control law is in general 

quite difficult to implement, although suboptimal schemes can be derived 

which can be implemented more practically.   However our primary objective 

has been to demonstrate that, for this problem, the state reachability problem 

with imperfect information is equivalent to an estimate reachability problem 

with perfect information, where the estimate is generated by an estimator 

MHMMHMüMMH 
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derived earlier in Chapter 4.    This equivalence should be expected to hold 

in some form for more general reachability problems not involving an 

energy constraint for the uncertain quantities.   However in such cases the 

necessary estimator, which will produce some estimate set, will in gen- 

eral require a very complicated implementation. 

The second problem considered is a target tube reachability problem 

with instantaneous ellipsoidal constraints for the uncertain quantities.   This 

problem was first examined in (Bl).    Our objective in this problem was to 

obtain suboptimal control schemes that can be practically implemented. 

We achieved this by reducing the state reachability problem with imperfect 

state information to a state estimate reachability problem of perfect infor- 

mation.    The state estimate is produced by the (suboptimal) bounding ellip- 

soid filtering algorithm developed earlier in Chapter 4.    The resulting con- 

trol law, though obtained through substantial approximations,  involves no 

more difficulty in its implementation than the corresponding perfect infor- 

mation control law considered in Chapter 3.   This control law can be easily 

modified for the case where the constraint sets for the uncertain quantities 

are defined in a somewhat different form than those considered in Section 3. 

Such for example is the case where the ellipsoids specified by the constraints 

(6.17) are not centered at the origin,, or the case where there are no mea- 

surement disturbances.   In these cases appropriate modifications must be 

made in the bounding ellipsoid estimator.   Another case sometimes appearing 

in practice is when the measurements are received by the controller with 

some delay.    Thus in time i the controller may know the measurements only 

up to time k, k < i.    Under these circumstances the controller must use a 
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predictor to generate the estimate x.u   instead of the filter of Proposition 

4. 3,  and the corresponding estimate reachability problem must be ap- 

propriately redefined. 

t 

MMHtfa 



CONCLUSIONS 

In this thesis the subject of the feedback, control of uncertain sys- 

tems has been examined for the case where the uncertainty has nonsto- 

chastic description.    In addition to theoretical investigations an effort 

has been made to provide design algorithms for the feedback control of 

uncertain systems which have potential for practical implementation.   The 

set-membership description of the uncertain quantities appears to be at- 

tractive from the point of view of the designer who is often faced with a 

situation where he has an incomplete statistical description of the uncertain 

quantities.    In such cases the designer often subjectively and arbitrarily 

assigns a probabilistic description to the uncertain quantities with the pos- 

sible result of a poor mathematical model for the physical problem in hand. 

It is the author's belief that some of the algorithms in this thesis, partic- 

ularly the ellipsoidal algorithms of Chapters 3 and 4,  can provide a serious 

alternative to such a procedure when the set-membership description of the 

uncertainty is available.   This is particularly so since, where applicable, 

these ellipsoidal algorithms lead to designs which have desirable features 

from the engineering viewpoint.   The estimators of Chapter 4 have the same 

structure as linear minimum variance stochastic estimators,  a structure 

which is desirable from the implementation point of view,  and the ellipsoidal 

algorithm of Chapter 3 leads to a linear control law which again can be im- 

plemented with relative ease. 

When considering the minimax approach towards a problem of deci- 

sion under uncertainty one should constantly be aware of the fact that this 

approach is conservative in nature.    In some problems where specified 

performance tolerances must be met with certainty the minimax approach 

-137- 
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is the natural one.   However in many other problems the minimax ap- 

proach may lead to unduly conservative designs, and the algorithms pro- 

posed in this thesis should be viewed in the light of this consideration.   If 

the design obtained through the minimax approach is deemed too conser- 

ative, other approaches such as a stochastic formulation of the problem 

can be considered. 

Chapters 2 and 5 of the thesis are primarily of theoretical nature, 

and contain results which require,  in general, a substantial computational 

effort for their use in a practical situation.    They are important, however, 

for providing a general framework for considering minimax problems, for 

obtaining existence results, for providing insight into the structure of the 

optimal controller, and for yielding results in special cases such as some 

of those considered in Chapters 3 and 6.    On the other hand, the emphasis 

in Chapters 3 and 4 and in part of Chapter 6 is in the development of algo- 

rithms which have potential for practical applications.    These algorithms 

are applicable to the case of a linear discrete-time system where the con- 

straint sett for the uncertain quantities are, or can be approximated by, 

ellipsoids.   Although these algorithms have some attractive features, their 

performance has not as yet been sufficiently evaluated either analytically 

or by simulation.   Furthermore the question of the quality of the approxi- 

mation involved in these algorithms remains as yet unresolved.    Thus 

some research and simulations are required to provide more insight into 

the merits and the drawbacks of these algorithms. 

Other areas where further research is required are the situations 

where the system is nonlinear and/or continuous-time.    The feedback control 
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problem which involves a nonlinear system and a set-membership des- 

cription of the uncertainty requires,  in general,  excessive computational 

effort for its solution as discussed in Chapter 5.   In this area optimal or 

nearly-optimal algorithms that are computationally feasible can be ex- 

pected only for problems with special structure.    The same appears to 

be true for the state estimation problem involving a nonlinear system. 

The state estimation problem involving a continuous-time linear system 

and either an energy constraint or instantaneous ellipsoidal constraints on 

the uncertain quantities presents no more difficulty than its discrete-time 

counterpart and has been considered in (B2).   The feedback control prob- 

lem involving a continuous-time system appears to present considerably 

greater technical difficulties than its discrete-time counterpart.   This 

problem is essentially a differential game for which a saddle point in 

pure strategies is not necessarily assumed to exist, and is worthy of 

careful consideration. 

Finally is should be mentioned that while in general the complete 

characterisation of the optimal controller in a minimax control problem is 

a very difficult task, the same is true of stochastic optimal control prob- 

lems with the exception of the case of the separation theorem for linear 

systems and quadratic criteria.    Unfortunately no result comparable in 

elegance to the stochastic separation theorem appears to exist in connec- 

tion with any particular minimax control problem. 



APPENDIX  I 

ON THE THEORY OF CONVEX FUNCTIONS 

In this appendix some definitions and results are summarized 

concerning convex functions defined on a finite dimensional Euclidean 

space.    Only the results that are necessary for the developments in 

Chapter 2 are presented here.   A complete exposition of the theory can 

be found in (Rl). 

The range of the function that we will be concerned with is the 

extended real line R     =   l-oo, oo).    The conventions adopted concerning 

arithmetic operations on R    which involve -oo or oo are as follows: 

Concerning addition we have: 

a + oo  =  oo + a -  oo, for ac (-oo, oo] 

a - oo  -   -oo + a =   -oo,  for ac [-00, 00) 

Concerning multiplication we have: 

aoo   -   00a =  oo,     a(-oo) = (-oo)a = -oo,     forac(0,ao) 

a ao   -   ao a  =   -oo,    a(-oo) = (-oo)a = 00,     forac(-oo,0) 

Ooo   =   GO 0 =   0 =   O(-oo)  =   (-oo)O 

The sums 00 - oo,  -00+00 are undefined and are avoided.    Under these 

rules addition and multiplication are commutative and associative, and the 

distributive law 

afaj + a2)   =   aa^ + aa2 

holds provided the sum (a.  -f a.) is neither of the forbidden sums oo - oo and 

-00 + oo. 

The cancellation laws hold as follows 
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a + a.   =   a. + a.-     ~^   a. = a.,     for a V -oo, oo 

aa.   =  aa,    =^ a. = a-,     for a ^  0,  -oo, oo 

Order on the extended real line is defined in the natural way. 

Concerning inequalities we have the cancellation laws: 

a + a.  < a + a,   =5> a.  < a,,     for  a ^ -oo, oo 

aa.  < aa,  =^ a.   <  a-,     for   a((0, oo) 

a a.  <  a a,    z&  a.   > a.i     for ae (-00, 0) 

One of the advantages of the extended real line is that it is closed 

under taking the supremum or the infimum of any of its subsets with the 

additional convention that for the empty set 

inf   f =  co,        «up ^   =   -oo 

The familiar minimax inequality 

•up   inf£(x, y)  <   inf   sup£(x, y) 

yc Y   xeX x«X y«Y 

holds for any function^ :   Rn x R"1   -   ( -00,  oo)   and any sets X CRn, YC«"1. 

In calculations which involve the supremum or infimum operation 

care sometimes must be exercised so that the forbidden sums oo - oo, 

-oo-t-oo do not appear.    For example if f. : Rn   —  (-oo, co],  f^R111   — 

(-00, oo) are functions and X, Y are subsets of R    and R      respectively 

we have 

inf If1(x) + f2(y)l   =   inf    inf ( fjCx) + tyy)) 
x, y xcX yeY 

xc X. yc Y 

=   inf If.(x) + inf f?(y)l 
x<X     i ycY 
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only if either -oo <   inf   f,(y) or Mx) < oo, V xcX. 
y€Y 1 

Such calculations are common in dynamic programming algorithms 

and will be used frequently in the text of the thesis. 

We now introduce some of the notions related to convex functions. 

Let f :R     -* ( -00,00]  be a function. 

Definition A. 1;   The epigraph of f is the subset of R" 

epif  =   {(x.^lxcR". ti€R, »i > f(x)} 

Definition A. 2:   The function f is called convex if the set epif C Rn      is 

convex.    If -00 <  f(x), V xc Rn this is equivalent to 

fl(l-\)x + \yl <  (l-\)f(x)+\f(y).  y xe(0, 1). Vx.ycRn 

Definition A. 3;   The convex hull of a function f, denoted by convf,  is the 

convex function which ha« as epigraph the set conv (epif) (convex hull of 

«pif). 

Definition A.4:  A convex function f is said to be proper if -00 < f(x), 

Vxe R    and f(x) < 00   for at least one xe R   .   It is said to be closed if epif 

is a closed set. 

Definition A. 5: The closure of a proper convex function f, denoted by elf, 

is the closed proper convex function which has as epigraph the set cl(epif) 

(closure of the set epif). 

Concerning closed proper convex functions we have the following 

proposition: 

Proposition A. 1:   Let f be a convex proper function.    The following 
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conditions are equivalent 

(a) f is closed. 

(b) The level sets {x|f(x) < a} are closed, y ae R. 

(c) f is lower semicontinuous. 

Proof:   See Theorem 7.1 in Reference (Rl). 

Definition A. 6:   The effective domain of a convex function f is the convex 

set 

domf   =    {x|f(x) < oo} 

A subset L of R    is called affine (linear manifold) if (1 - X ) x + Xye L, 

Yx, yc L, V Xe R.    Given now a convex set C in R    the affine hull of C is the 

smallest affine set that contains C.   With these definitions we have: 

Definition A. 7;    The relative interior of the effective domain of a convex 

function f,  denoted ri (domf), is the interior of the set domf relative to its 

affine hull. 

Definition A. 8:   A convex function f is said to be positively homogeneous if 

f(Xx)   =    Kf(x)t    VxcR11.     V\€{0,oa) 

An example of a positively homogeneous convex function is the 

support function of a convex set C 

«•(x|C)   =   sup      <x, x > 
x*€ C 

Concerning continuity of convex functions we have: 

Proposition A.2:   Let f be a proper convex function on R   .    Then the re- 

striction of f to any subset C of domf which is open relative to the affine 
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hull of domf is continuous.    In particular the restriction of f to ri (dornt) 

is continuous.    This implies that a convex function which is finite on all 

of R    is continuous. 

Proof:   See Theorem 10. 1 of Reference (Rl). 

Some important operations involving convex functions will now 

be introduced: 

Proposition A. 3:   If f.,  fy are proper convex functions in R    the function 

f. 4-f- is convex.    It is proper if domf. f) domf-   ^ <^ • 

Proof:   See Theorem 5.2 in Reference (Rl). 

Proposition A. 4:   If f.,  fy are proper convex functions in R    the function 

f defined by 

f(x)   =    inf{f1(x-y) + f2(y)} 
y 

is convex.    The function f is denoted as f =   f. 0 f-   and the operation D 

is called infimal convolution. 

Proof:   See Theorem 5.4 in Reference (Rl). 

Proposition A. 5:   Let f.,   ic I,  be convex functions,  where I is an arbitrary 

ind^x set.    Then the function f defined by 

f(x)   -    sup f (x) 
if I    l 

iff convex. 

Proof:   See Theorem 5.5 in Reference (Rl). 

Proposition A. b:   Let A be a linear transformation from R    to R    .    Then 
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for each convex function g on R    ,  the function gA defined by 

(gA)(x)   =   g(Ax) 

is convex in R   .    For each convex function h on R  , the function Ah 

defined by 

(Ah)(y)   =   inf     h(x) 
Ax=y 

is convex on R      (Notice that in accordance with the convention inf 9= oo 

we have (Ah)(y) = oo for all y which are not in the range of A).    The func- 

tion Ah is called the image of h under A and the function gA is called the 

inverse image of g under A. 

Proof;   See Theorem 5.7 in Reference (Rl). 

We now introduce the notion of the recession function of a convex 

function.    This notion is extremely helpful in proving closure and propcrness 

of functions resulting from functional operations introduced earlier as well 

as in proving existence of solutions in convex optimization problems. 

Let C be a nonempty convex set in R   .    We say that C recedes in 

the direction of the vector   s / 0 if and only if x-f Vze C for every X > 0 and 

x( C.   The set of all vectors ze R    that satisfy this condition together with 

a = 0 is called the recession cone of C,  denoted by 0 C. 

Definition A. 9:    Let f be a proper convex function.    The recession function 

f0+ of f is the convex function which has as epigraph the set 0  (epi f). 

Proposition A. 7;   The recession function f 0   of a proper convex function f 

is a positively homogeneous proper convex function given by 

(fO*)(s)   =    sup {f(x+ s) - f(x)|xe domf) 
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If f is closed then fO   is closed also. 

Proof;   See Theorem 8. 5 in Reference (Rl). 

Definition A. 10:   A direction defined by a vector z ^ 0 is called a direction 

of recession of the proper convex function f if (fO  )(z) <  0.   It is called a 

direction in which f is constant if (fO )(z) =   (fO )(-z) =   0. 

Thus a proyier convex function f every direction of recession of which is a direc- 

tion in which it is constant is characterized by the fact that (fO )(z) >  0, 

and (f0+)(8 ) = 0 implies (f0+)(-«) = 0. 

Some criteria for properness and closure of functions resulting from 

functional operations of convex functions will now be given. 

Proposition A. 8;   If f.,  ly are closed proper convex functions and f. +f- is 

not identically oo then f. -f f- is a closed proper convex function and 

(fj +f2)0+  =   fjO"*" + f2o+ 

Proof:   See Theorem 9.3 in Reference (Rl). 

Proposition A. 9:   Let f., f- be closed proper convex functions in R    such 

that there exists no z€ R    such that 

(f10
+)(z) + (f20+)(-z) > 0 

(f10
+)(-z) + (f20+)(B) <  0 

Then f. Q (. in a. closed proper convex function and the infimum in the 

equation 

(fjD^Hx)   =   inHfjCx-y) + f2(y)} 
y 

is attained by some y for each x.    Moreover 
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(f1Df2)0+ =  f1o
+Of2o+ 

Proof;   See Corollary 9.2.1 in Reference (Rl). 

Proposition A. 10;   Let f., Id,   be closed proper convex functions where 

I is an arbitrary index set.    Then the function f defined by 

f(x)   =    sup f.(x) 
iel   1 

either is the constant oo function or it is a closed proper convex function 

and fO    is given by 

(f0+)(z)   =   sup(f0+)(2) 
iel    1 

Proof;   See Theorem 9.4 in Reference (Rl). 

Proposition A. 11;   Let h be a closed proper convex function on R  ,  and 

let A be a linear transformation from R   to Rm.   Assume that there exists 

no ze Rn such that Az = 0, (h0+)(z) <  0 and (h0+)(-z) >  0.    Then the func- 

tion Ah,   where 

(Ah)(y)   =   inf    h(x) 
Ax=y 

is a closed proper convex function and (Ah)0     =   A(h0   ).    Moreover for 

every y such that (Ah)(y) < oo the infimum in the definition of Ah is attained 

for some x. 

Proof;   See Theorem 9.2 in Reference (Rl). 

Proposition A. 12;   Let g be closed proper convex function on R    ,  and let A 

be a linear transformation from R    to R    .    Assume that the function gA 

defined by 
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(gA)(x)   =   g(Ax) 

is not identically oo.    Then gA is a closed proper convex function and 

(gA)0+ =   (gO+)A. 

Proof:   See Theorem 9.5 in Reference (Rl). 

As an application of the above  propositions consider the function 

H,   in R    defined by 

Hk(xk)   =   inf {Ek+1(Akxk + Bkuk) + g^)} (A. 1) 
uk 

where E,,, :R    -*  (-00,00], gi.:R      ~*  (-00, oo) are closed proper convex 

functions and A, : R    -*  R  ,  B. :R      — R    are given linear transformations. 

The function H.   above is of great interest in Chapter 2.   Assume that H,   is 

not identically oo and consider the following assumptions: 

Assumption R:   Every direction of recession of each of the functions E, ,, 

and g.  is a direction in which this function is constant. 

Assumption C;   The recession function of g,   is of the form 

(gk0+)(z) =  00      for z ^ 0,      (gk0+)(0) =   0 

The following proposition holds: 

Proposition A. 13:   Under either Assumption R or Assumption C the function 

H.  of equation (A. 1) is given by 

and it is a closed proper convex function.    Furthermore for each x. e R    the 

infimum in equation (A. 1) is attained by some u, 6 R    , and in the case of 

Assumption R every direction of recession of the function H.   is a direction 
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in which H,   is constant, k 

Proof:   Under either Assumption R or Assumption C the conditions of 

Proposition A. 11 are satisfied so that the function (-B. )g.   given by: 

((-Bk)g.](y)  =   inf g (u ) 

is a closed proper convex function and [ (-B. )g. ] 0    =  (-B.)g.O  . 

We have now 

Hk(xk)   =   inf {Ek+1(Akxk + Bkuk) + gk(uk)) 

=    inf   inf (E       (Ax       y) + g(u)} 

y   uk 

y-W 

- in{{Ek+ii\xk'y>+ w   *ki\» 
y uk 

y=-Bk\ 

- y^^W-y)* <-V«k^} 

=   lEk+l
D<-Bk)8kl<AkV 

= [lEk+iD<-Bk^Ak3K> 

where by our assumptions none of the forbidden sums oo - oo or -oo +oo 

appears in the above algebra.   Thus equation (A.2) is proved. 

The relation ({-BjJgJ 0    =   ("BjJgjO    implies in the case of 

Assumption R that every direction of recession of the function (-B. )g,  is 

a direction in which this function is constant as can be easily seen by 

applying the appropriate definitions and Proposition A. 11.    In the case of 

Assumption C we have 
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I (-Bk)gk) 0+ U)   =   oo for z ^ 0.        ({-Bk)gkl 0+ (0) -  0. 

In both cases the conditions of Proposition A. 9 are satisfied so that 

the function E. . .D(-B. )gk is a closed proper convex function and by Propo- 

sition A. 12 the function H.  of equation (A. 2) is also a closed proper convex 

function. 

To see that the infimum in equation (A. 1) is attained observe that 

if x.   is such that H. (x. ) = oo then the infimum is attained for every u. c R   . 

If x,   is such that H, (x, ) < oo then attainement of the infimum follows by 

making use of the conclusions of Propositions A. 9 and A. 11 in the equation 

Hk(xk)   ^    inf{Ek+1(Akxk.y)+    inf gk(uk)} 

y uk 

y=-Bkuk 

In the case of Assumption R the conclusion that every direction of 

recession of the function H,  is a direction in which it is constant follows k 

from the equation 

Hk0+   ^   lEk+l0+O<-Bk>8k0+lAk 

which holds by Propositions A. 9, A. 11 and A. 12, Q. E. D. 

The important notion of the conjugate function of a convex function 

is now introduced. 

Definition A. 11:   Let f be a convex function in R   .    The conjugate function 

f    is defined as 

f*(x*)   =    sup {< x.x* >   -f(x)}    =    - inf {f(x) - <x>x* >} 
X X 

and is a closed convex function in R   ,  proper if and only if f is proper. 

Moreover (elf)* -- f* and (f )*= elf. 
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An important example of a pair of conjugate functions is the indicator 

function and the support function of a closed convex set C.    We have 

6(x|C) =   0    if xeC,    6(x|C) =   oo       if x^X 

o*(x*|C) =   (r(x*|C) =   sup  <x*,x > 
xtC 

Concerning conjugate functions of convex functions resulting from the 

operations introduced earlier we have a duality between addition and infimal 

convolution, and between the image and the inverse image of a convex func- 

tion under a linear transformation,  in accordance with the following propo- 

sitions: 

Proposition A. 14:   Let f., f- be proper convex functions in R   .    Then 

(fjDV* -   f*^* 

(clfj + clf2)*   =   cl{f*Dt*) 

and if ri(dom f. ^r^domf«) V d> the closure operation can be ommited from 

the second equation. 

Proof:   See Theorem 16.4 in Reference (Rl). 

Proposition A.   5:   Let A be a linear transformation from R    to R    .    For 

any convex function h on R    we have 

(Ah)*   =   h*A' 

For any convex function g on R     we have 

((clg)Al*   =    cl(A'g*) 

and if there exists an x such that Axe ri (domg),  the closure operation can 

be ommited from the second equation. 

L 
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Proof;   See Theorem 16.3 in Reference (Rl). 

The notion of the directional derivative and the related notion of 

the subdifferential is fundamental in the problem of finding the minimum 

of a convex function. 

Let f be any function from R    to [ -co, oo)  and let x be a point where 

f is finite.    The one-sided directional derivative of f at x with respect to a 

vector ye R    is defined as the limit 

/•(x;y)=  lim  ÜZllflzJisl ^ 
X—0 

if it exists (oo and -oo being allowed as limits). 

Proposition A. 16: Let f be a convex function, and let x be a point where f 

is finite. Then for every y the limit in equation (A. 3) exists and the func- 

tion r(x;y) is a positively homogeneous convex function of y. 

Proof:   See Theorem 23. 1 in Reference (Rl). 

Definition A. 12:   A vector x c R    is said to be a subgradient of a convex 

function f in R    at a point x if 

f(z) > f(x) +<x*,  «-x>,        yi€Rn (A.4) 

The set of all subgradients of f at x is called the subdifferential of f at x, 

it is denoted by ^f(x),and it is a closed convex set.    If df(x) 4 ^ then f is 

said to be subdifferentiable at x. 

Proposition A. 17: Let f be a proper convex function. For x^domf,df(x) is 

empty. For xeri(domf), öf(x) is nonempty and f'friy) is the support func- 

tion of M(x).    Finally M(x) is a compact set if and only if xcint(domf). 
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Proof;   See Theorem 23.4 in Reference (Rl). 

It should be noted that if f is differentiable at a point x then ^f(x) 

consists of a single point the gradient Vf(x).    Another important case to 

note is when f is the indicator function of a closed convex set C.    Then 

for xcC, äf(x) =   ö«(x|C) =   {x*|0 > <x*,  z-x >,    V zcC}, i. e..  ^6(x| C) 

is the set of all vectors normal to C at x. 

Duality is prevalent in the theory of subgradients due to the following 

fact 

Proposition A. 18;   For any proper convex function f and any x the following 

conditions are equivalent: 

(a) x*eäf(x) 

(b) <  56,x    > - f(*) achieves its supremum in z at z = x. 

(c) f(x) + f*(x*) =  < x.x* > 

Proof;   See Theorem 23.5 in Reference (Rl). 

We also have; 

Proposition A. 19:   Let f.,  f, be proper convex functions on R    and let 

f = fj + f,.    Then 

öf(x) 3 öfjCx) + M2(x) .       ^x€Rn 

I 

I If ri(domfj) 0 ri(domf2) V ^  then actually 
1 

hHx) =   ^fjCx) + öf2(x) .        V xcRn 

Proof: See Theorem 23.8 in Reference (Rl). 

Proposition A. 20:   Let f(x) = h(Ax)( where t\ is a proper convex function 

on R     and A a linear transformation from R    to R Then 
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^(x) ^A'öMAx),       ^xcRn 

If the range of A contains a point of ri(domh) then 

öf{x)   =   A'öh(Ax),       Vx€Rn 

Proof:   See Theorem 23.9 in Reference (Rl). 

If {x } is a sequence converging to a point xcR    it is not generally 

true that for any ycR    the sequence {f'fr  ;y)} converges to f'friy).    The 

following proposition however is useful in some cases. 

Proposition A.21;   Let f be a convex function on R    and let C be an open 

convex set on which f is finite.    Let {f } be a sequence of convex functions n 

finite on C and converging pointwise to f on C.    Let xc C and let {x  } be a n 

sequence of points in C converging to x.    Then for any ye R    and any sequence 

{y   } converging to y we have 

lirr    «up f,
n(xn; yn) < f'frjy) 

n — oo 

Proof:   See Theorem 24. 5 in Reference (Rl). 

As an application of the above we prove the following proposition 

which will be useful in Chapter 2.    Th* i proposition is a generalization of 

results in References (Dl) and (Dal). 

Proposition A. 22:    Let V : R    x R      —  (-oo, oo) be a function and let Y be a 

compact subset of R    .    Assume further that for every vector ycY the func- 

tion $ (* , y): R    ->  (-oo, oo] is a closed proper convex function.    Consider 

the function f defined as 

f(x) sup^(x,y) 
ycY 
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Then if f is finite somewhere it is a closed proper convex function. 

Furthermore if int(dom f) 4 $ and O is continuous on the set int(dom f) x / 

then for every xe int(dom f) we have 

öf(x)   =    conv{äy(x.9)ly€Y(x)) 

where Y(x) is the set 

Y(x)   =    {^Y\Cf(x,Y)   =   maxö(x,y)} 
J yc YJ 

Proof; The fact that f is a closed proper convex function follows immedi- 

ately from Proposition A. 10. Let xeint(domf) and let C be an open convex 

neighborhood of x such that f is finite on C.    Then (p is finite and continuous 

on CxY since CCint(domf).   Now for any c(R    let {x }   =   {x-f X  z) be a n n 

sequence of vectors in C with X    >   0,   {X  }   -►   0.    Let also {y  } be a se- n n n 

quence of vectors such that f(x)= OP(x  , y   ),   i.e.,  y €Y(x   ) C Y.    Such a 

sequence exists by the compactness of Y and the continuity of the function 

Cfi (x .') on Y.    Furthermore by compactness of Y the sequence {y   } has a 

subsequence which converges to a vector ycY.    Thus without loss of gener- 

ality we can assume that the sequence {x  } is selected so that the corre- 

sponding sequence (y   } converges to the vector yc Y.    We now prove that 

in fact yf Y(x),  i.e.,  thatCf(x, y) = maxtffx, y).    We have by the continuity 
^ yc Y J 

of f on C for any   € >  0 

f(x) - €   <  t{x ) for   n > N. 
-       n —     i 

and by the continuity of & on CxY 

f(xn)   =y ^n'^n1 -Jr^'^ + C for    n - N2 

and therefore 
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f(x)   --    max (f{x, Y) <(f (x. y) + 2c 

and since the above inequality holds for any e  >  0 we conclude maxCF(x, y) 
ye Y ^ 

y(x.9)and9e Y{x). 

Now we have: 

f(x + xnr) - f(x)       y(x + V. yn) - y(x' y* 
 ü  =  S  

<    j    ^(x.y^) 
0(Xn) 

with    lim 
0(Xn) 
—i-    =   0.    Taking limits in the above inequality we obtain 

n—to       n 

V{x\z) <   lim  sup(^(x, yn;c) (A. 5) 
n—oo 

Now the sequence of functions of x  {^f(*.y  )} converges pointwise to 

the function^f(«, y) on the open set C by the continuity of Cf on CxY,  and by 

applying Proposition A. 21 

lim  «up^fCx, yn;s) <y (x, y;x) 
n—oo " 

Using the above in relation (A. 5) we obtain 

r(x;.) <y\x,y:z) 

A   —. On the other hand we have for every vector yc Y(x) 

f(x + Xn«) - '(x) y (x + Xn«, 9n) -^(x. ^) 
 1    =    S  

n n 

-   K  
n 

(A. 6) 
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Taking limits in the above inequality we obtain 

f^x;«) >y'(x,y:«). ftrcY(x) (A.7) 

From relations (A. 6) and (A.7) it follows that 

r(x;«)   =   max   Cl(x. y:«) 
9eY(x)J 

i 
and since by Proposition A. 17 ^(x, y:*) is the support function of the convex 

compact set dWx, y) and f^x;*) is the support function of the convex compact 

set df(x) it follows: 

af(x) = convfaytx.^ly«^)}        Q.E.D. 

Consider now a closed proper convex function of f and the problem 

of finding its m.nimum in R   .    The set of points xc R    such that 

f(x)   =   inff(x) 
x 

will be called the minimum set of f.    We have the following proposition: 

Proposition A. 23:   The following statements are valid for any closed proper 

convex function f and its conjugate f  . 

(a) inf f(x)   =    -f (0).    Thus  f is bounded below if and only if Otdomf . 
x 

(b) A vector x belongs to the minimumset of f if and only if 0c df(x). 

(c) The minimum set of f is df (0).    Thus the infimum of f is 

attained if and only if f    is subdifferentiable at 0.    This condition 

is satisfied in particular when Oc ri(doin f ); moreover one has 

0c ri(domf ) if and only if every direction of recession of f is 

a direction in which f is constant. 
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(d) The minimum set of f is a nonempty compact set if and 

only if Oe int(doiTtf ). This holds if and only if f has no 

directions of recession. 

(e) The minimum set of f consists of a unique vector x if and 
* * 

only if f    is differentiate at 0 and x = Vf (0). 

Proof:   See Theorem 27.1 in Reference (Rl). 

The above Proposition illustrates the fundamental role of the sub- 

differential in convex minimisation problems and shows the importance of 

the recession function in such problems. 

1 

I 



APPENDIX      II 

In this Appendix we present the proofs of Propositions 3. 1 and 3.2. 

We begin with the proof of Proposition 3.1.    For the purpose of clearer 

presentation a few lemmas,  some of which are well known, will be given 

first: 

Lemma A. 1:   Let 2.,  S, be positive definite symmetric nxn matrices. 

Then 

(a) Lj  < Z2 if and only if        Zj1  >  r^1 

(b) There exist positive scalars (A. V such that 

VZ2 < Sj  < nS2 

Proof;   (a)   For allyeRn, (y'S^yf2 =    sup <x,y> >       sup <x,y> = (y'SlV/^Q-E.D. 
1 x'2!«! !       " x'2^ - 1 

(b)   For any two norms in R   , || • |:|.,   ||«|| -»there exist positive scalars 

H, v such that 

^1/2||x||2<   Hxllj  < ^1/2|WI2 forallxeRn 

Taking Hxllj   =  (x'Zjx)172,      ||x||z= (x'Z^x)172 the result 

follows Q.E.D. 

Lemma A. 2;   Let F be an nxn matrix such that for every eigenvalue 

2      2 X = a + bi of F we have a   +b    <   1.    Then there exists a positive definite 

symmetric matrix M such that 

F'MF < M 

Proof:   This lemma is a direct consequence of the fact that il p(F) = 

max Wa   +b   |X = a + bi, X:eigenvalue of F} then for every e,>  0 there exists 

-159- 
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1IZ a Euclidean norm ||x|| = (x'Mx)        suchthat 

/T7X ^   lliHl                llFxIl                    (x'F'MFx)1^2    ^     /r,, , p(F) <   ||F|| = sup   ■ tVi M    =   sup ^   ,   . jS  < P(F) +6 
x      "   " x        (x'Mx) 

(see for example,  Reference (II) 

Since p(F) <   1 there exists a positive definite symmetric matrix M such that 

(x'F'MFx)1/2    .  . 
SUp_i        1

/y2—   <  1 
x (x'Mx) 

implying F'MF < M   Q.E.D. 

Lemma A. 3;   Let (S. } be a sequence of positive definite symmetric nxn 

matrices such that 23.   <  S.    .   < M for all k,  where M is a positive definite 

symmetric matrix.    Then the sequence {S. } converges (in any norm in Rn  ) 

to a positive definite symmetric matrix S    . 

Proof;   This lemma is a special case of a result for positive operators in 

Hubert space*        '   and has appeared in this form in Reference (WoZ). 

Lemma A.4:    Consider the sequences of matrices (K. },   (2, } generated 

by the equations 

K,    j    =   A'fK^1 - GQ^G' + ER^B'J^A+>P (A. 8) 

K     =¥ n 

H/y."1 _ no"1r.i\"1 
S =    (A-BL)'(S^   -GQ^O'^A-BL) +^ + L'RL   (A. 9) 

n 

where A, B, G, L are given matrices of dimension nxn,  nxm,  nxr,  mxn 

respectively and x ,Q and R are given positive definite symmetric matrices, 

Assume that for all k the matrix 2.   is positive definite and symmetric and 

^^M^MMI 
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GQ'1^ < S,"1 for all k 

Then we have for all k 

0 <  Kk 1 ^k and GQ'1^ <  K'1 

Proof;   We prove the   lemma by induction.    For k = N it holds.    Assume 

0 <  K.   £ S, .    It will be proved that 0 < K.    ,   < Z.    ..    For convenience 

write 

M   =   (Z^-GQ^G')"1  >  (K^1-GQ'!    •)"1 

Then from equations (A. 8) and (A. 9) 

^k-l ' Kk-1   =   (A-BL),M(A-BL) +>^+ L,RL 

- A'CK^-GQ'^' + Bw^B')"^    V 

> (A-BL)'M(A-BL) + L'RL - A'CM-1 +BR"1B,)"1A 

By using the well known matrix identity 

(M"1+BR■1B,)"1   =   M - MB(BIMB+R)"1B'M 

in the above inequality and by expanding we obtain 

S.    j - Kk_1   >   A'MA + L,(B,MB+R)L - L'B'MA - A'MBL 

- A'MA + A,MB(B'MB + R)"1B'MA 

=   L,(B,MB + R)L - A'MBL - L'B'MA 

+ A'MB(B'MB + R)"1B'MA 

=   [L - (R+B'MB)'1B'MA],(B'MB+R)[L - (R + B'MBj'^'MA) 

> 0 
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Hence      ^i-.i   £   ^k-l'   Since GQ'  G'   <   KJ"      it follows from equation 

(A.8) that 0 <  Kk-1 and since GQ'^' <  Z^j  < K^j we also obtain 

GQ^G« <  K^j  Q.E.D. 

Lemma A. 5:   Consider the sequence of matrices (2. } generated by the 

equation 

Zk_l    =   F'CZ"1 - GQ"^')"^ +>lr+ L'RL (A. 10) 

£n   =V (A.U) 

where T, R,Q, G, F, L are given matrices of appropriate dimension,^, R and 

Q are positive definite and symmetric and for every eigenvalue X = a + bi of 
2        2 

the nxn matrix F we have a    + b    <   1. 

Let M be a positive definite symmetric matrix such that F'MF < M, 

let q be a positive scalar such that 

GQ^G1   <   qM-1 (A. 12) 

and let t* be a positive scalar such that 

F'MF   <   (1 -qti)M,       qji <   1 (A. 13) 

The existence of such a scalar |x is guaranteed since by Lemma A. 1 there 

exists a positive scalar v such that VM <  M - F'MF and any scalar ^ with 

0 <  |A < —  satisfies the inequality (A. 13).    Assume further that the matrices 

¥, R and L are such that 

^ L'RL  < -^—[(l-qji)M - F'MF) (A. 14) 

Then the sequence (Ej) converges to a positive definite symmetric matrix 

D Furthermore the matrices Z,   are positive definite and for all k 
-00 K 
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GQ^G« < Z^1   ,       Zk < jiM (A. 15) 

Proof;   It will be proved under our assumptions that 

0  <   2k   <   Z^j   <   »iM (A. 16) 

then by Lemma A. 3 convergence will follow and furthermore the inequality 

(A. 1 5) will be satisfied since from (A. 12) and (A. 13) we have 

GQ^G'   <   qM"1   <   -i-M"1   <   Zj^1 

The relation (A. 16) will be proved by induction.    We have from (A. 14) 

0 < ^ =   ZN < jiM which also implies {^'    - GQ"   G1)'    is positive definite 

and from equation (A. 10) we have^ = ZN <  ZN  ..   Assume that 2. ., 5 2, < 

\iM,    Then 

Z^j   =   F'CZJ^1-GQ"^')"^+^1^+ L'RL 

>   F'CZJ^j-GQ^G'J^F +^+ L'RL   =   Zk 

and also 

Zkl   =   F'CZ^1-GQ'^')'^ +>ir+ L'RL 

<   F'C—M"1-GQ'^')"^+>§'+ L'RL 

fF'f—M"1-     qM'1)"^+^+ L'RL 

=   -r-^ F'MF +>ir + L'RL  <   jiM 1 -qjx 

where the last inequality follows from relation (A. 14).    Thus we obtain 

Z.   <  Z.    .   < pM and the induction proof is complete    Q. E. D. 

We are now ready to state the proof of Proposition 3.1: 

Proof of Proposition 3.1;   It is required to prove that there exists a scalar 
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ß.  such that for every ß with 0 < ß < ß. there exist positive scalars a-.b. 

such that for every a,  b with 0<a5.ai»0<b<b1 the sequence {K. } 

generated by the equation 

Kk_1    =   A'({l-ß)K'1--^GQ"1G'+-g-BRj1B'l_1A + a^1 (A.17) 

KN   =   a^ (A. 18) 

converges to a positive definite symmetric matrix K        and furthermore 

we have 

-jj-GQ^G«   <   K'1 for aU k (A. 19) 

The Lemma A. 3 will be used to reduce the proof of the proposition to 

proving a different statement.   We first make the following observatio t: 

If for some ß,a,b the inequality (A. 19) holds for all k then 

K.    <   Kk-1 for all k (A. 20) 

We prove this fact by induction.    For k = N we have from equation (A. 17) 

^f KN - KN-r   AfSume Kic+i 1 
K|t-   

Then from (A'17) 

K,^^    =   A'|(l-ß)KJ;1--^fi-GQ"1G' +-i-BR1"1BM'1A + a,*,
1 

>   A'I(l-ß)Kj;i1--^GQ"1G' + -g-BRJ"1B'r1A + a^p   Kk 

Now if we could find a positive definite symmetric matrix S such that 

Kk   <   S for all k (A. 21) 

and furthermore 

-g-GQ^G'   <   S"1 (A.22) 



-165- 

then the inequality (A. 19) would be satisfied for all k and from the relations 

(A. 20) and (A. 21) we would have K.   < K.    .   < S for all k.    This in turn 

would imply by Lemma A. 3 that the sequence (K. } converges to a positive 

definite symmetric matrix K 

Thus in order to prove the proposition it is sufficient to demonstrate 

a positive scalar ß, < i and for every p,  0 < ß < ß. positive scalars a., b. 

such that for all a, b,  0<a<a.,  0 < b < b. there exists a matrix S satisfying 

relations (A. 21) and (A. 22). 

Since the pair (A, B) is stabilizable there exists an mxn matrix L 

such that the matrix (A-BL) is stable.    Let ß. be a scalar,  0 < ß. < 1  such 

that the matrix 

Fl   =   (1 -ß1)"1/2(A-BL) 

is also stable.   Clearly such a scalar exists and for every p,  0 < ß < ß.,  the 

matrix 

F   =   (1 - ß)"1/2(A - BL) (A.23) 

is also stable.    It will be shown below that ß.  satisfies the requirements of 

the proposition. 

Let now for any ß,   0 < ß < ßj,   Ä   =    (1 - ß)"1/2A,  B  =   (l-ß)"1/2B. 

The equation (A. 17) can be rewritten as 

K^j   =   A'lKJ^1 --g-GQ^G« +-g-BR[1 B'l'1* + a^ (A.24) 

and since the matrix F of equation (A.23| can be written as F     A -  BL.  by 

using Lemma A. 4 we obtain that 

Kk   <   Z:k for all k (A. 2 5) 
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where £,   is the solution of the equation 

2:k   j    --   F'(Lk
l  --g-GQ^O^F +a*j + bL'RjL 

'N a*. 

(A.26) 

(A.27) 

provided that 0 < £.   for all k and 

-g-GQ^G«   <   L^1 for all k. (A. 28) 

Now by Lemma A. 5 if 

a^+bL'RjL  <   -j^-Kl-qKi)!^ - F'MFl (A. 29) 

where M is a positive definite symmetric matrix and q, t* are positive scalars 

such that 

F'MF   <   M 

-i-GQ^G«   <   qM'1 

F'MF   <   (1 - q>i)M 

(A. 30) 

{A.31) 

(A. 32) 

the sequence {£.) generated by equation (A. 26) converges to a positive defi- 

nite symmetric matrix £_      and we have -x-GQ'  G'  <   ET     for all k and 

£    <   txM for all k.    Thus for a, b satisfying the relation (A. 29) we have from 

(A. 2 5) that for S = jiM 

K     <   S for all k 
K 

Furthermore since 0 < q»* < 1 from equation (A. 31) 

•g-GQ^G'   <   qM'1   <   —M'1   =    S-1 
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Therefore for S = ji.M the relations (A. 21) and (A. 22) are satisfied and 

consequently the sequence (K. } converges to a positive definite symmetric 

matrix K       and the inequality (A. 19) is satisfied for every a,b satisfying 

the inequality (A. 59).    It is clear from Lemma A. 1 that there exist positive 

scalars a., b.  such that for every a, b,   0 < a < a.,   0 < b < b. the inequality 

(A. 19) is satisfied.    Any such scalars a-.b.  satisfy the requirements of 

the proposition. Q.E.D. 

We next present the proof of Proposition 3.2. 

Proof of Proposition 3.2;   We will prove that for the state of the closed-loop 

system 

xk+1    =    (A - BL)xk (A. 33) 

with 

L   =   (R + B'F      B^B'F      A 
-00 -00 

and for any positive integer N we have 

xNK.a,XN +
kVk(>|f+ L'RL)xk  <   xoK-ooXo (A•34, 

Then from the positive definiteness of (¥+ L'RL) asymptotic stability of the 

system (A. 33) follows. 

To prove the relation (A. 34) we will use the following identity which 

is familiar from Riccati equation theory. This identity can be verified in a 

straight forward manner 

K =    (A - BLJ'F     (A-BD+^+L'RL (A. 35) 
-00 -00 

We also have 
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KL - (i-p><K:i0-T
GQ'lG,) < "-L-T*0'10' - K'.l 

implying 

K <    F (A. 36) 
-oo -oo 

By using relations (A. 35) and (A. 36) we now have: 

"NX-OO'N \Vk(*+L,RL,Xk 

N-2 
=   x'       ((A-BL)'Fm(A.BL)+^+L'RLlxN.1 +   Z    x^+L'RDx,^ 

N-l k=0 

=   «N-lK-a.-N-. \Vll<*
+L'RL>''k H 

or 

<   ^K.00xN,1*xi(^L.RL)x< 

<   x<;((A-BL)'F_oo(A-BL)+>ir+ L'RLlxo =   x;K_ooxo 

N-l 

Q.E. D. 
x"    -^ *'      k=0 
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